User Guide
of
Pipeline CAMAC Controller
with
PC104plus Single Board Computer
(CC/NET)

Yoshiji YASU, Eiji INOUE,
Shuichi HARADA(1) and Haruyuki KYOO(2)

Online group, Institute of Particle and Nuclear
Studies
High Energy Accelerator Research
Organization(KEK)
(1) TOYO Corporation
(2) Fird Corporation

November 2003

Contents

1 Introduction 1
1.1 Overview of Pipeline CAMAC Controller 1
1.1.1 Functionality 1

1.1.2 Performance 2

1.1.3 Pipeline Method:Why so fast? 2

1.2 Organization L L 4
2 Hardware Components 1
2.1 PC104plus Single Board Computer 1
22 PClcontrolunit. 1
2.2.1 Architecture L. 1
2.2.2 Components: Tx/Rx FIFOs, Tx/Rx PCI engines and PCI multiplexer 3

2.3 CAMAC control unit L 3
2.3.1 CAMAC Executor 3
2.3.2 CAMAC Interrupter 3
2.3.3 DAQ Executor 3
2.3.4 DAQ Interrupter 4

2.4 (CSP: a general purpose interconnect between PCI and CAMAC 4
2.4.1 Introduction 4

2.5 Front Panelo 5
2.5.1 LEDs e 5
2.5.2 Switches L 5
2.5.3 Trigger-Input and Busy-Out)
2.5.4 Ethernet, USB, VGA and PS/2 5

2.6 Power Consumption 7
2.6.1 Power for CPU board 7
2.6.2 Power consumption of 6 Von CAMACbus. 7

3 Operation 8
3.1 PCII/Oregisters 8
3.1.1 Tx Datal and Tx Data2 registers 8
3.1.2 Tx Control register 8
3.1.3 Tx Statusregister 10
3.1.4 Tx Memory Address register 10
3.1.5 Tx Preset Count and Tx Actual Count registers 10
3.1.6 Tx FIFO Count register 10
3.1.7 Rx Datal and Rx Data2 registers 12

3.1.8° Rx Control register

3.1.9 Rx Statusregistero
3.1.10 Rx Memory Address register
3.1.11 Rx Preset Count and Rx Actual Count registers
3.1.12 Rx FIFO Count register
3.1.13 System register o
3.1.14 Int Datal and Int Data2 registers
3.1.15 Int Control registero L.
3.1.16 Int Statusregister. Lo
3.1.17 Int FIFO Count register
3.2 Frame Format oL
3.21 Frame Header Lo
3.2.2 Basic CAMAC function
3.2.3 CAMAC LAM Interrupt
3.24 DAQ function
3.2.5 DAQ Trigger Interrupt oL
3.3 Operation procedureo
3.3.1 PIO . . . e
3.3.2 DMA . .
3.3.3 Imterrupt
3.4 Special CAMAC Functions to pipeline CAMAC controller
CAMAC Device Driver and the Library
4.1 Installation L
4.1.1 How to get the distribution kit
4.1.2 How to compile and load the device driver
4.2 General Purpose CAMAC Library00,
4.2.1 Setup Functions Lo
4.2.2 CAMAC Functions
4.2.3 CAMAC Single Action Lo o oo
4.2.4 Interrupt Handlingo oo
4.3 CAMAC Library dedicated to pipeline CAMAC controller
4.3.1 CAMAC frame buffer structure
4.3.2 CAMAC/DAQ command frame generators
43.3 CAMACopen/close
4.3.4 PIOroutines
4.3.5 Block I/Oroutines
4.3.6 Combined routineo
4.3.7 Interrupt handling routines for Trigger and LAM Interrupts
4.3.8 CAMAC/DAQ reply frame extraction routines
4.4 Examples
441 Tools
4.4.2 Check programs L oo
4.5 Programming L
4.5.1 Command frame generation
4.5.2 Command frame execution
4.5.3 Data and status extractions Lo,

i

4.5.4 Interrupt handling L oo 43

5 Linux System 45
5.1 Linux Installation using KNOPPIX CD including CAMAC utility 45
5.1.1 How to get the distribution kit 46
5.1.2 How to install Linux system 46
5.2 Application Software Lo 46
5.2.1 Simple remote access programs written in C language 47
5.2.2 Remote Access program using Java Remote Method Invocation
(JavaRMI) oo o 47
6 Performance 50
6.1 Environment and setup for the measurement 50
6.2 lmbench for Linux system performance measurement 50
6.2.1 Timingissueso 50
6.2.2 Latency measurementso o1
6.2.3 Context switching performance 53
6.3 Other benchmark programs for Linux system performance measurement . . 57
6.3.1 Memory Copy Performance 57
6.3.2 NETPERF 57
6.4 CAMAC performance 59
6.4.1 Performance of basic functions 0oL 59
6.4.2 Block transfer performance 60
6.4.3 Interrupt frame performance oL 60
6.4.4 CAMAC performance with the CAMAC library 62
6.5 Application performance Lo 62

6.5.1 CAMAC remote access program 62

il

List of Tables

2.1
2.2
2.3

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18
3.19
3.20
3.21
3.22
3.23
3.24
3.25
3.26
3.27
3.28
3.29
3.30
3.31
3.32

4.1

CSP signals L e 5
Power Consumption of the CPU board 7
Power Consumption of 6 V.on CAMACbus 7
PCII/O register map 9
Tx Datal and Tx Data2 registers 9
Tx Control register L 10
Tx Status register Lo 11
Tx Memory Address register L. 11
Tx Preset and Actual Count registers 11
Tx FIFO Count register 11
Rx Datal and Rx Data2 registers 12
Rx Control registero 12
Rx Status register Lo 13
Rx Memory Address register 13
Rx Preset and Actual Count registers 13
Rx FIFO Count register 14
System register Lo 14
Int Datal and Int Data2 registers 14
Int Control register 15
Int Status registero 15
Int FIFO Count register 16
Frame Format 16
Frame Header o 16
Selection of Operation, 17
Frame Header Contents 17
Payload for Basic CAMAC command frame 18
Payload for Basic CAMAC reply frame 18
CAMAC status o ot e e e 18
Payload for CAMAC LAM Interrupt reply frame 19
Payload for Basic DAQ command frame 20
DAQ control 20
Payload for Basic DAQ reply frame 20
DAQ Status 21
Payload for DAQ Trigger Interrupt reply frame 21
Special CAMAC Function 23
CAMAC frame buffer structure 29

iv

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8

Environment and setup for the performance measurement 51

Null system call time (in usec) 52
Process creation time (in usec) oL 53
Context switch times with 4 processes (inusec) 54
Context switch times with 96 processes (in usec) 56
I/O port access performance 59
performance of kernel routines L. 59
CAMAC performance 59

List of Figures

1.1
1.2

2.1
2.2
2.3
2.4

3.1
3.2

5.1

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13
6.14

Configuration of Pipeline CAMAC Controller
Performance of Pipeline CAMAC Controller

pipeline CAMAC controller
Block diagram of PCI control unit
Block diagram of CAMAC control unit
Front Panel of Pipeline CAMAC Controller

Frame formats of CAMAC command and reply
Frame formats of DAQ command and reply

GUI for CAMAC e

Latency of getppid system call
Latency of read system call
Latency of pipe system call
Latency of fork&exit system call
Process switching performance with 4&96 processes which size are 4KB
Process switching performance with 4&96 processes which size are 16KB
Process switching performance with 4&96 processes which size are 64KB .
Memory Copy Performance
TCP throughput o L
TCP request & response
Block transfer performance
Interrupt Frame Performance
CAMAC performance with software library
CAMAC performance over network

vi

Chapter 1

Introduction

1.1 Overview of Pipeline CAMAC Controller

CAMACI1] is a IEEE standard electronics and still used in High Energy and Nuclear
Physics experiments. Lots of CAMAC controller were developed so far, but the pipeline
CAMAC controller is an epoch-making controller because the throughput achieves ap-
proximately up to 3 MB/s with 24-bit data. The controller occupies 2 slots(station 24,25)
in a CAMAC crate. The controller is located in the crate shown in Figure 1.1. It consists
of a PC104Plus-based single board computer, PCI interface (PCI control unit) and CA-
MAC interface (CAMAC control unit). The PC104Plus is a standard PCI specification
for embedded systems[2] and the low-power board computer includes a flash disk with
IDE interface, Fast Ethernet, USB and so on. The PCI and CAMAC interfaces consist
of a ALTERA FPGA[3], respectively. The controller also has a DAQ function for event
numbering. The signal handling of trigger-input and busy-out are implemented while the
event count can be read out.

Linux system|4, 5] can run on the pipeline CAMAC controller while the device driver
and the library|[6, 7, 8] are also provided.

The pipeline CAMAC controller and the software are developed by KEK[9], TOYO[10]
and Fird[11].

1.1.1 Functionality

There are a CAMAC Executor, a CAMAC LAM Handler (CAMAC Interrupter), a DAQ
Executor and a DAQ Trigger Handler (DAQ Interrupter) in the pipeline CAMAC con-
troller. The Executors accept a packet including at least a command frame or more from
CPU via PCI, execute them and then send reply frames to CPU. The Handlers generate
a packet including a reply frame and then send to CPU. When LAM or Trigger interrupt
occurs during the executors processes a packet, the generation of interrupt reply frame
will be postponed. After the packet is processed, the interrupt reply frame will be sent.

The pipeline CAMAC controller can execute CAMAC command with small overhead
continuously by receiving the command frames from a computer memory and sending the
reply frames to the computer memory. The controller also includes a DAQ function for
event numbering. The NIM signal of trigger input and busy out can be handled while the
event count can be read out.

Fast Ethernet

PC104plus PC board computer
PCM-9370's Crusoe TM5400.
Memory, Flash Disk, Ethernet,
USB, ...

ALTERA FPGA for PCI
ALTERA FPGA for CAMAC

Figure 1.1: Configuration of Pipeline CAMAC Controller

The size of command and reply frames is 64-bit. It consists of 8-bit header and 56-bit
payload. The payload for basic CAMAC command frame contains CAMAC station num-
ber N, CAMAC sub-address A, CAMAC function F and data to be written if necessary.
That for the reply frame additionally contains CAMAC status such as Q & X and read
data if the CAMAC function is 'read’. That for CAMAC LAM includes 24-bit LAM
pattern and that for DAQ Trigger includes 32-bit event count. That for DAQ Executor
can clear busy-out signal while the signal disables next event trigger.

1.1.2 Performance

The pipeline CAMAC controller can execute a CAMAC access in 1 usec + small overhead
(40 nsec), that is, the throughput is approximately 3 MB/sec with 24-bit data. Figure
1.2 shows the performance of the controller. An unit of mesh in the Figure is 1 usec.
CAMAC Busy and CAMAC S1 signals are shown.

1.1.3 Pipeline Method:Why so fast?

From historical point of view, CPU speed of PC and the Bus speed are getting faster and
faster. However, the actual CAMAC access speed of the controllers so far is slow and far
from maximum CAMAC speed, 3 MB/sec. There is a reason why it is so slow. It is already
proved that pipeline method is useful for speed up on DAQ system. Lots of architectures
related to pipeline method were developed in 1990s. However, no CAMAC controller
adopted the pipeline method so far. The key point is to adopt a true pipeline from
CAMAC command in CPU memory to the result (e.g., readout data) in CPU memory.

Busy

31

K | i | £ . i . cidl.

-“ch2 " 5.00 V

: : j : . T m10.00%

LI e S TR T

Figure 1.2: Performance of Pipeline CAMAC Controller

M 1.00Ms A Chl L

1.40 v

Foriprrrderdm bt i m e prnphe A b n

Some CAMAC controller partially adopted the pipeline method using a list processing[12],
but it was not the true pipeline. Thus, the throughput did not achieve maximum CAMAC
speed 3 MB/sec because the pipeline was destroyed at some point. The pipeline CAMAC
controller realized the true pipeline.

The architecture of the pipeline CAMAC controller is completely different from that
of old style of CAMAC controller so far. Thus, the operation of the pipeline CAMAC
controller is also different from that of the old CAMAC controller. For the operation on
the old CAMAC controller, N (station number), A (sub-address) and F (function) are
put into an I/O register in the CAMAC controller and then the go bit of the register is
set, for starting the operation. Then, the status of the completion is checked and the data
are read. After that, next operation of CAMAC command will start. The old CAMAC
controller does not adopt the pipeline method. The pipeline CAMAC controller adopts
the truly pipeline method. The pipeline method enabled the controller maximum speed
of CAMAC, approximately up to 3 MB/sec with 24-bit data. On one hand, the pipeline
CAMAC controller sends multiple command frames, which include N, A, F and data if
necessary, via Tx [/O registers in the PCI control unit. On the other hand, the controller
receives multiple reply frames, which also includes N, A, F, status(Q and X) and data if
necessary, via Rx I/O registers in the PCI control unit. The operations to Tx and Rx
are done concurrently. If DMA is used, the throughput reaches maximum speed. The
Figure 1.2 is the timing of CAMAC Busy and CAMAC S1 signals when the DMA starts.
DMA function is provided on old CAMAC controller, but the function is limited such as
Address-scan, Q-stop and so on. For the pipeline CAMAC controller, any operation to
CAMAC are executed in DMA mode. There is no limitation. From DMA point of view,
the pipeline CAMAC controller is also completely different from old CAMAC controller.

1.2 Organization

The readers of this guide may not read all of chapters. This section introduces the contents
of all chapters in the guide briefly. Thus, the readers can jump to the chapter they need.

This chapter 1 shows the overview of pipeline CAMAC controller. They should read
this chapter first to understand the pipeline CAMAC controller.

The chapter 2 introduce the hardware components. The chapter describes the detail
of three components, PC104-Plus board computer, PCI control unit and CAMAC control
unit. There are also the descriptions of the front panel and the power consumption.

The chapter 3 describes not only the PCI operation but also the frame format of
CAMAC/DAQ command/reply. The PCI registers and the bit assignment are shown.
The special CAMAC functions are also explained. If the readers like to understand the
detail of how to operate the registers, read the section of operation procedure.

The chapter 4 explains how to get the distribution kit of CAMAC device driver and the
library, how to install the driver and the library, the usage and the examples. It describes
the detail of calling sequence of the CAMAC libraries while there are a general purpose
CAMAC library and a dedicated CAMAC library for the pipeline CAMAC controller.

The chapter 5 describes Linux system and the applications running on the pipeline
CAMAC controller. The chapter introduces how to recover the Linux system although a
Linux system tailored by KEK will be pre-installed into a compact flash disk at purchase
of the pipeline CAMAC controller. Two application programs are shown. One is remote

CAMAC library and another is a WEB-based CAMAC executor. When the remote
CAMAC library is used, a CAMAC program running on the pipeline CAMAC controller
(the board computer) can run on remote computer without any modification. By using
WEB-based CAMAC executor, a simple CAMAC operation can be done on a WEB
navigator such as Internet Explorer.

The chapter 6 shows the results of the performance measurement. It includes Linux
system performance measured by a benchmark program lmbench, netperf and so on.
From the results from Imbench, Latency of operating system entry, process creation costs
and context switching costs are shown. netperf provides TCP throughput performance
and TCP response / request performance. Memory copy performance is measured by a
simple program. The CAMAC performance is also included in the results. It consists of
performance of basic functions, block transfer performance, interrupt frame performance
and CAMAC performance with the software library. From application point of view,

CAMAC remote access program is evaluated.
This user guide is available in the URL[13].

Chapter 2

Hardware Components

The pipeline CAMAC controller is located into 24th and 25th slots of CAMAC crate.
It mainly consists of a PC104Plus Single Board Computer, a PCI control unit and a
CAMAC control unit. Figure 2.1 shows the side view of pipeline CAMAC controller
called CC/NET. There are four boards as the components. The left side board including
CAMAC card edge connector in the front is called D board. It includes DC-DC converter
and CAMAC line driver. The center board including gold plate in the front is called C
board. It is the board computer. The smallest board in the front is called A board, which
is connected to the C board via PC104Plus PCI bus[2]. It is the PCI control unit. The
rear board is called B board, which is connected to the A board via a general purpose
interconnect called CSP[14]. The CAMAC control unit consists of the D board and the
B board.

2.1 PC104plus Single Board Computer

The board computer is Advantech PCM-9370[15], 3.5” (145 mm x 102 mm) Transmeta
Crusoe 500 MHz processor Single Board Computer including TM5400 processor, 310 MB
memory, two IDE UltraDMA 33 mode up to 33MB/sec, LCD/CRT controller, 10/100
Mbps Ethernet controller, two 1.1 compliant USB ports, mini-din connector for keyboard,
PS/2 mouse and so on. The board computer also support an Embedded PCI protocol,
PC/104-Plus.

2.2 PCI control unit

The A board includes a ALTERA FLEX10KE100 FPGA. On one hand, the board con-
nects to CPU board via 4x30 (120-pin) 2mm pitch stack-through connector for PC104plus
PCI. On the other hand, the board also connects to CAMAC control unit via 2x40 (80-pin)
TX14 series connector for a general purpose interconnect called CSP[14].

2.2.1 Architecture

The block diagram of PC control unit is shown in Figure 2.2. There are, Tx/Rx FIFO,
Tx/Rx PCI engines and PCI multiplexer for Tx/Rx. Tx and Rx PCI engines work
independently while PCI multiplexer manages the PCI usage for Tx and Rx PCI engines.

Figure 2.1: pipeline CAMAC controller

Altera FPGA
TX PTr}:(|
"‘_HFO“—E *
CAMAC/ Ve -
ﬂA.Q wx+1 PCI
gIC RX
A pC|
SFiFo " B
Engine
PCI Iogic

Figure 2.2: Block diagram of PCI control unit

2.2.2 Components: Tx/Rx FIFOs, Tx/Rx PCI engines and PCI
multiplexer

Tx/Rx FIFOs have the depth of 256 with 32-bit width each. Tx/Rx PCI engines have two
modes, master and slave. The slave means PCI slave which the PCI interface becomes at
the operation of PCI registers from CPU. In master mode, the PCI interface can transfer
data from/to memory in computer without CPU intervention. Thus, master mode not
only reduces CPU usage but also realizes fast transfer in comparison with the slave mode.

The Tx PCI engine receives a least a command frame via PCI bus and then sends it
to the Tx FIFO. The Tx FIFO sends the command frame to a CAMAC executor via the
CSP. The Rx FIFO engines receives a least a reply frame via the CSP and then sends
it to the Rx PCI engine. The Rx PCI engine send the reply frame to PCI. The PCI
multiplexer shares the PCI usage with Tx/Rx PCI engines. Thus, Tx/Rx PCI engines
can work independently.

2.3 CAMAC control unit

The unit in the Figure 2.3 includes the B board located into 25th CAMAC station and
the D board located into 24th CAMAC station. The B board is a main board of CAMAC
control unit, which contains ALTERA FLEX10KE50 FPGA. The B board is connected
to the D board via 2x40 (80-pin) TX14 series connector. The D board contains DC-DC
converter for the C board and the line driver for CAMAC bus.

The FPGA includes basic CAMAC execution by CAMAC Executor, CAMAC LAM
handling by CAMAC Interrupter, execution of DAQ functions by DAQ Executor and
DAQ trigger handling by DAQ Interrupter as the functions.

2.3.1 CAMAC Executor

The executor receives CAMAC command frames from the PCI control unit and then
executes CAMAC cycles. It sends CAMAC reply frames as the result to the PCI control
unit via the packet control circuit.

2.3.2 CAMAC Interrupter

The interrupter generates a LAM interrupt frame as CAMAC reply frame when an inter-
rupt occurs on a CAMAC module. The reply frame is sent to the PCI control unit via
the packet control circuit.

2.3.3 DAQ Executor

The executor receives DAQ command frames from the PCI control unit and then executes
the DAQ functions. It sends the result frames as DAQ reply frames to the PCI control
unit via the packet control circuit.

Altera FPGA
| of CAMAC
A executor
M I o)
A_h CAMAC 2 [ty
CI T Interrupter q PCT
o D logic
S
DAQ S
ssv. || €Xecutor
ouT 1
@_. DAQ
. |[INnterrupter
IN

Figure 2.3: Block diagram of CAMAC control unit

2.3.4 DAQ Interrupter

The interrupter generates a DAQ trigger interrupt frame as DAQ reply frame when a DAQ
trigger is input from TRIG-IN LEMO connector. The reply frame is sent to REPLY FIFO
via the packet control circuit.

2.4 CSP: a general purpose interconnect between PCI
and CAMAC

The PCI control unit and CAMAC control unit are connected by the interconnect. The
interconnect is designed in general. It can handle simple packet transfer. A packet
contains multiple frames. For an example, the frame size for CAMAC is 8 bytes. This
means 4 cycles of the interconnect is necessary for a CAMAC frame.

2.4.1 Introduction

When ReadyToWrite and ReadyToRead signals are asserted, data can be sent and re-
ceived. A packet transfer begins at this moment. The transmitter should write data and
the receiver should read it at next clock when EnableToSendPacket and EnableToRe-
ceivePacket signals are both asserted. When ReadyToWrite or ReadyToRead signal is
deasserted, a packet transfer should be terminated. When EnableToWrite or Enable-
ToRead signal is deasserted, a packet transfer should be paused.

4

Table 2.1: CSP signals

I/0 Signal name | Description

ReadyToWrite Ready to write a packet or start writing a packet
EnableToWrite Enable to write data in a packet

ReadyToRead Ready to read or start reading a packet
EnableToRead Enable to read data in a packet

Clock Up to 25MHz

Data 16bits

Data width 1 means 16-bit width and 0 means 8-bit width
Tx Information 4 bits for transmitter

Rx Information 4 bits for receiver

2.5 Front Panel

Figure 2.4 shows a front panel of the Pipeline CAMAC controller.

2.5.1 LEDs

There are several LEDs. The CPU LED is used for indicating status of CAMAC control
unit. If the LED blinks, CAMAC control unit is not ready. Thus, a flag SYS_ READY
in System register should be set. The BUSY LED is direct reflection of CAMAC Busy
signal. The NO-X and NO-Q LEDs mean final states of CAMAC X and CAMAC Q,
respectively. If CAMAC X or CAMAC Q is not set, the NO-X or NO-Q is light. The
L-SUM LED is light when one of CAMAC modules issues LAM and the LAM is enabled.
The I LED means final state of CAMAC Inhibit. The IE LED is light when the interrupt
of the controller is enabled.

2.5.2 Switches

There are two toggle switches. One is for setting CAMAC Online and Offline. Another
is for generating CAMAC Z and CAMAC C.

There is a small push-button for reseting the Pipeline CAMAC controller. The reset
makes the power down/up.

2.5.3 Trigger-Input and Busy-Out

Two LEMO connectors of NIM signals for Trigger Input and Busy Out are used for event
numbering of DAQ.

2.5.4 Ethernet, USB, VGA and PS/2

There are Fast Ethernet connector, VGA connector, PS/2 connector and USB connector.
The USB is master device, not target device. Thus, the pipeline CAMAC controller can
not be handled via the USB.

Figure 2.4: Front Panel of Pipeline CAMAC Controller

Table 2.2: Power Consumption of the CPU board

Condition Power consumption
booting time 16.8 W -14.4 W

idle time 9.6 W - 7.2W
CAMAC access time | 14.4 W - 12.0 W

Disk access time 16.8 W-14.4 W

Table 2.3: Power Consumption of 6 V on CAMAC bus

Condition Power consumption
idle time 1.8-24W
CAMAC access time (data pattern = 0) 6.0-6.6 W
CAMAC access time (data pattern = OxFFFFFF) | 6.6 - 7.2 W

2.6 Power Consumption

The power consumption of the pipeline CAMAC controller depends on the running con-
dition. The CPU board (C board) consumes lots of power. Its power is supplied via
DC-DC converter from 24 V to 6 V on the D board. Thus, 24 V of CAMAC power supply
should be monitored. On the other hand, CAMAC line driver consumes the power of 6
V on CAMAC bus. Thus, 6 V of CAMAC power supply should be also monitored. It is
assumed that there is no graphic display. There were two CAMAC modules. One is the
pipeline CAMAC controller. Another one is a switch register.

2.6.1 Power for CPU board

At booting time of Linux system, the current of 0.7-0.6 A flowed. This means that the
power of 14.4 W to 16.8 W was consumed. Table 2.2 shows the power consumption
depended on the condition. The power consumption in the table 2.2 except CAMAC
access time only includes that of CPU board, not the switch register module because the
module does not use 24V.

2.6.2 Power consumption of 6 V on CAMAC bus

There were two CAMAC modules. One is the pipeline CAMAC controller. Another one
is a switch register. The power consumption in the table 2.3 is total power consumption
including both modules.

Chapter 3

Operation

3.1 PCI I/O registers

There are three kinds of registers. One is for Tx and another is for Rx. The other is system
register. Those registers are located in PCI I/O space and the size of those registers is
32-bit.

In programmed I/O (PIO), Datal and Data2 registers for Tx and Rx are used for
sending command frames and receiving reply frames, respectively. FIFO count register
contains number of data in longword(4bytes). For an example, Rx FIFO count register is
used for getting the number of data to be transferred.

In block I/O (DMA), Address register is used for pointing to address of kernel com-
mand/reply frame buffers and preset count register represents the number of frames in
quadword(8 bytes) to be transferred. After the transfer, actual count register contains the
number of frames in quadword(8 bytes) transferred actually. Control register and status
register contains control and status information related to interrupt and DMA.

System register is used by system administrator.

Those registers are summarized in Table 3.1.

3.1.1 Tx Datal and Tx Data2 registers

Datal and Data2 registers for Tx are used for sending command frames in Programmed
I/O mode. As the size of command frame is 64-bit, lower 32-bit corresponds to Datal
register and upper 32-bit corresponds to Data2 register. Table 3.2 shows the format.
When the upper data is written into Data2 register, 64-bit command frame will be sent
to CAMAC. If data in Datal register is used again, next command frame will be sent by
only writing data to Data2 register.

3.1.2 Tx Control register

Tx Control register contains control information related to interrupt and DMA. Whenever
Tx FIFO is full, full-FTFO interrupt will occur if TC_INT_ENABLE_FULL_FIFO bit is
set. Packet-end interrupt will occur only when Tx actual count register reaches to Tx
present count register if TC_INT_ENABLE_PKT_END bit is set. When TC_CLR_FIFO
bit is set, Tx FIFO in PCI control unit will be zero. Each bit assignment is shown in
Table 3.3. The register can be read and written.

Table 3.1: PCI I/O register map

I/0O offset address | Register name | Description

00h TxDatal Tx datal register

04h TxData2 Tx data2 register

08h TxControl Tx control register

0Ch TxStatus Tx status register

10h TxAddress Tx address register

14h TxPresetCount | Tx preset count register
18h TxActualCount | Tx actual count register
1Ch TxFifoCount Tx FIFO count register
20h RxDatal Rx datal register

24h RxData2 Rx data2 register

28h RxControl Rx control register

2Ch RxStatus Rx status register

30h RxAddress Rx memory address register
34h RxPresetCount | Rx preset count register
38h RxActualCount | Rx actual count register
3Ch RxFifoCount Rx FIFO count register
40h System System register

60h IntDatal Int datal register

64h IntData2 Int data2 register

68h IntControl Int control register

6Ch IntStatus Int status register

7Ch IntFifoCount Int FIFO count register

Table 3.2: Tx Datal and Tx Data2 registers

Bit assignment | Description

D31..D00

32-bit data used in Programmed I/0

Table 3.3: Tx Control register

Bit assignment | Bit name Description

D31..D28 0(not used)

D27 0 (not used)

D26 TC_INT_ENABLE_FORCE_END | Enable Force-end interrupt
D25 TC_INT_ENABLE _FULL_FIFO Enable full-FIFO interrupt
D24 TCINT_ENABLE_PKT_END Enable Packet-end interrupt
D23..D20 0(not used)

D19 0 (not used)

D18 TC_INT_CLR_FORCE_END Clear Force-end interrupt
D17 TC_INT_CLR_FULL_FIFO Clear full-FIFO interrupt
D16 TC_INT_CLR_PKT_END Clear Packet-end interrupt
D15..D12 0(not used)

D11..D08 0(not used)

D07..D04 0(not used)

D03..D02 0 (not used)

Do1 TC_CLR_FIFO Clear Tx FIFO

D00 TC_SRT_DMA Start DMA

3.1.3 Tx Status register

Tx Status register contains status information related to interrupt and DMA. When the
Tx/Rx information is zero, the communication via CSP has no problem while non-zero
of the information means communication error occurs. The Status register is read-only.
The detail is summarized in Table 3.4.

3.1.4 Tx Memory Address register

In DMA, Tx Memory Address register is used for pointing to address of kernel command
frame buffer to be transferred.

3.1.5 Tx Preset Count and Tx Actual Count registers

In DMA, Tx Preset Count register represents the number of command frames to be
transferred. Tx Actual Count register contains the number of frames transferred actually.
The maximum size of those registers are shown in Table 3.6, but the maximum number is
limited by operating system. In Linux, maximum size of kernel buffer which is allocated in
a continuous memory, is 128 KB. This means 16K frames can be sent at once. Therefore,
the maximum size is 14-bit for Linux.

3.1.6 Tx FIFO Count register

Tx FIFO Count register represents the actual number of data in Tx FIFO. The unit is 32-
bit, not 64-bit. The depth of FIFO is 256 for 128 command frames. Thus, the maximum
size is 8-bit shown in Table 3.7.

10

Table 3.4: Tx Status register

Bit assignment

Bit name

Description

D31..D28 TS_RX_INFO Rx information

D27..D24 TS_TX_INFO Tx information

D23..D20 O(not used)

D19 0(not used)

D18 TS INT_FORCE_END When Force-end interrupt occurred, 1.
D17 TSINT_FULL_FIFO When full-FIFO interrupt occurred, 1.
D16 TSINT_PKT_END When Packet-end interrupt occurred, 1.
D15..D12 0(not used)

D11 O(not used)

D10 TS_FULL_FIFO indicating Tx FIFO is full.

Do9 TS_HALFFULL_FIFO indicating Tx FIFO is half-full.

D08 TS_EMPTY _FIFO indicating Tx FIFO is empty.

D07..D04 O(not used)

D03..D02 0(not used)

Do1 TS_-TIMEOUT_FRAME | No CAMAC response (in PIO)

D00 TS_.DONE_FRAME A frame was successfully processed.(in PI0O)

Table 3.5: Tx Memory Address register

Bit assignment

Description

D31..D00

32-

bit Memory address

Table 3.6: Tx Preset and Actual Count registers

Bit assignment

Description

D31..D00

24-bit, Counter (actually 14-bit)

Table 3.7: Tx FIFO Count register

Bit assignment

Description

D31..D00

8-bit Counter

11

Table 3.8: Rx Datal and Rx Data2 registers

Bit assignment | Description

D31..D00

32-bit data used in programmed I/o

Table 3.9: Rx Control register

Bit assignment | Bit name Description

D31..D30 0(not used)

D29 RCINT_ENABLE_FORCE_END Enable Force-end interrupt

D28 RC_INT_ENABLE PRESET FIFO Enable Preset interrupt

D27 RC_INT_ENABLE_FULL_FIFO Enable full-FIFO interrupt

D26 RC_INT_ENABLE_HALFFULL_PKT | Enable half size Packet-end interrupt
D25 RCINT_ENABLE_PKT_END Enable Packet-end interrupt

D24 RCINT_ENABLEINPUT_FRAME Enable first frame input interrupt
D23..D22 O(not used)

D21 RCINT_CLR_FORCE_END Clear Force-end interrupt

D20 RCINT_CLR_PRESET _FIFO Clear Preset interrupt

D19 RCINT_CLR_FULL_FIFO Clear full-FIFO interrupt

D18 RCINT_CLR_.HALFFULL_PKT Clear half size of Packet-end interrupt
D17 RC_INT_CLR_PKT_END Clear Packet-end interrupt

D16 RCINT_CLRINPUT_FRAME Clear first frame input interrupt
D15..D012 O(not used)

D11..D08 O(not used)

D07..D04 0(not used)

D003..D02 O(not used)

D01 RC_CLR_FIFO Clear Rx FIFO

D00 RC_SRT_.DMA Start DMA

3.1.7 Rx Datal and Rx Data2 registers

Datal and Data2 registers shown in Table 3.8 for Rx are used for receiving reply frames
after sending command frames. When Datal register is read, 64-bit reply frame will be
stored into Datal and Data2 registers. Datal and Data2 registers contain lower 32-bit
and upper 32-bit, respectively.

3.1.8 Rx Control register

Rx Control register contains control information related to interrupt and DMA. Whenever
Rx FIFO is full, full-FIFO interrupt will occur if TC_INT_ENABLE _FULL_FIFO bit is
set. Packet-end interrupt will occur only when Rx actual count register reaches to Rx
present count register if TC_INT_ENABLE_PKT_END bit is set. When TC_CLR_FIFO
bit is set, Rx FIFO in PCI control unit will be zero. Table 3.9 summaries them.

3.1.9 Rx Status register

Rx Status register contains status information related to interrupt and DMA. The Status
register is read-only. The detail is summarized in Table 3.10.

12

Table 3.10: Rx Status register

Bit assignment | Bit name Description

D31..D28 RS_RX_INFO Rx information

D27..D24 RS_TX_INFO Tx information

D23..D22 0(not used)

D21 RS_INT_FORCE_END When Force-end interrupt occurred, 1.

D20 RS_INT_PRESET FIFO When Preset interrupt occurred, 1.

D19 RS_INT_FULL_FIFO When full-FIFO interrupt occurred, 1.

D18 RS_INT_HALFFULL_PKT | When half size of Packet-end interrupt occurred, 1.
D17 RS_INT_PKT_END When Packet-end interrupt occurred, 1.

D16 RS_INT_INPUT_FRAME When first frame input interrupt occurred, 1.
D15..D12 O(not used)

D11 0(not used)

D10 RS_FULL_FIFO indicating Rx FIFO is full.

D09 RS_HALFFULL_FIFO indicating Rx FIFO is half-full.

D08 RS_EMPTY _FIFO indicating Rx FIFO is empty

D07..D04 O(not used)

D03..D01 0(not used)

D00 RS_TIMEOUT_FRAME Timeout in PIO

Table 3.11: Rx Memory Address register

Bit assignment

Description

D31..D00

32-bit Memory address

3.1.10 Rx Memory Address register

In DMA, Rx Memory Address register is used for pointing to address of kernel reply frame
buffer to be transferred.

3.1.11 Rx Preset Count and Rx Actual Count registers

In DMA, Rx Preset Count register represents the number of reply frames to be trans-
ferred. Rx Actual Count register contains the number of frames transferred actually. The
maximum size of those registers are shown in Table 3.12, but the maximum number is
limited by operating system. In Linux, maximum size of kernel buffer which is allocated in
a continuous memory, is 128 KB. This means 16K frames can be sent at once. Therefore,
the maximum size is 14-bit for Linux.

Table 3.12: Rx Preset and Actual Count registers

Bit assignment

Description

D31..D00

24-bit Counter (actually 14-bit)

13

Table 3.13: Rx FIFO Count register

Bit assignment | Description
D31..D00 8-bit Counter

Table 3.14: System register

Bit assignment | Bit name Description

D31 SYS_READY CAMAC ready state

D30 SYS_RESET reset PCI and CAMAC
D29..D28 0 (not used)

D27..D24 SYS_.CAMAC_FRAME SIZE | frame size in 2**N (read-only)
D23..D00 0 (not used)

3.1.12 Rx FIFO Count register

Rx FIFO Count register represents the actual number of data in Rx FIFO. The unit is
32-bit, not 64-bit. The depth of FIFO is 256 for 128 reply frames. the maximum size is
8-bit shown in Table 3.13.

3.1.13 System register

System register shown in Table 3.14 is used by system administrator. After power up,
LED indicating system ready is blinking. When SYS_READY flag is set, the LED con-
tinues to be light. This means CAMAC controller can be used. If some trouble occurs
and CAMAC controller hangs up, SYS_RESET flag is useful for resetting CAMAC con-
troller. It is a reset without power off/on and resets the FPGAs of PCI and CAMAC. The
frame size of command and reply is 64-bit, namely, 8 bytes. SYS_.CAMAC_FRAME _SIZE
represents the size as 2**N. Thus, the value should be 3. It is read-only.

3.1.14 Int Datal and Int Data2 registers

Datal and Data2 registers for Int are used for receiving interrupt reply frames in Pro-
grammed I/O mode. As the size of command frame is 64-bit, lower 32-bit corresponds
to Datal register and upper 32-bit corresponds to Data2 register. Table 3.15 shows the
format. When Datal register is read, 64-bit reply frame will be stored into Datal and
Data2 registers.

Table 3.15: Int Datal and Int Data2 registers

Bit assignment | Description
D31..D00 32-bit data used in Programmed I/0

14

Table 3.16: Int Control register

Bit assignment | Bit name Description

D31..D28 0(not used)

D27..D25 0 (not used)

D24 ICINT_ENABLE | Enable interrupt for LAM & TRIG
D23..D20 0(not used)

D19..D17 0 (not used)

D16 ICINT_CLR Clear interrupt for LAM & TRIG
D15..D12 0(not used)

D11..D08 O(not used)

D07..D04 0(not used)

D03..D02 0 (not used)

Do1 IC_CLR_FIFO Clear Int FIFO

D00 0 (not used)

Table 3.17: Int Status register

Bit assignment | Bit name Description

D31..D28 0(not used)

D27..D24 0(not used)

D23..D20 0(not used)

D19..D17 0(not used)

D16 ISINT When an interrupt occurred, 1.
D15..D12 0(not used)

D11 0(not used)

D10 IS_FULL_FIFO indicating Int FIFO is full.
D09 IS_HALFFULL_FIFO indicating Int FIFO is half-full.
D08 IS_.EMPTY _FIFO indicating Int FIFO is empty.
D07..D04 O(not used)

D03..D01 0(not used)

D00 IS_TIMEOQUT_FRAME | Timeout in PIO

3.1.15 Int Control register

Int Control register contains control information related to LAM & TRIG interrupt. The
interrupt will occur when an interrupt reply frame comes into and IC_INT_ENABLE bit

is set. When IC_CLR_FIFO bit is set, Int FIFO will be zero. Each bit assignment is
shown in Table 3.16. The register can be read and written.

3.1.16 Int Status register

Int Status register contains status information related to LAM & TRIG interrupt. The
Status register is read-only. The detail is summarized in Table 3.17.

3.1.17 Int FIFO Count register

Int FIFO Count register represents the actual number of data in Int FIFO. The unit is 32-
bit, not 64-bit. The depth of FIFO is 256 for 128 command frames. Thus, the maximum

15

Table 3.18: Int FIFO Count register

Bit assignment | Description
D31..D00 8-bit Counter

Table 3.19: Frame Format

D63..D56 D55..D00
Frame Header (8 bits) | Payload (56 bits)

size is 8-bit shown in Table 3.18.

3.2 Frame Format

There are two types of frame, namely, command frame and reply frame. The command
frame is sent to CAMAC from memory in computer via PCI bus while the reply frame
is generated at CAMAC and then stored into memory in computer via PCI bus. The
frame shown in Table 3.19 consists of the frame header and the payload. The size of the
header is a byte or 8 bits while that of the payload is 7 bytes or 56 bits. The 64-bit frame
are divided into two 32-bit data. The lower 32-bit data (D31..D00) corresponds to Datal
register and first 32-bit data in 32-bit data array. The upper 32-bit data (D63..D32)
corresponds to Data2 register and second 32-bit data in 32-bit data array. This means
the data format is represented in so-called little endian.

3.2.1 Frame Header

A frame includes a frame header of a byte shown in Table 3.20. A packet can include at
least one or more frames. The CC_SPKT bit should be set for the start frame in a packet.
The CC_EPKT bit should be set for the end frame in a packet. When both the bits are
set, the packet has a single frame. For the other frame, both the bits should be reset.
CC_SEL bits chooses the operation in Table 3.21.
Table 3.22 shows all types of frame header.

Table 3.20: Frame Header

Bit assignment | Bit name | Description

D63 CC_FIXED | always 1

D62 CCSPKT | 1if start frame in a packet
D61 CC_EPKT | 1 if end frame in a packet
D60..D59 CC_SEL select operation

D58..D56 0 (not used)

16

Table 3.21: Selection of Operation

Bit 60 | Bit 59 | Operation

0 0 Basic CAMAC operation

0 1 CAMAC LAM Interrupt operation
1 0 Basic DAQ operation

1 1 DAQ Trigger Interrupt operation

Table 3.22: Frame Header Contents

Operation Start Frame | Normal Frame | End Frame | Packet Frame
Basic CAMAC | 0xC0 0x80 0xA0 0xEO0
CAMAC LAM | - - - 0xE8
Basic DAQ 0xDO0 0x90 0xB0 0xF0
DAQ TRIG |- - - 0xF8
CAMAC Frame Format
_ ~ 64-bit fixed-length
Basic CAMAC operation
X
cmd| N A F 24-bit DATA
RX
mly| N | A | F [STAT 24-bit DATA
Header[* Payload =]|

N:station, A:sub-address, F:function, STAT status(Q.X,...)
Read : data(tx) has no meaning.
Write : data(rx) has no meaning.
NDT : data(tx) and data(rx) have no meaning.

LAM(interrupt) CAMAC operation

RX

rply

P4-bit LAM information

Figure 3.1: Frame formats of CAMAC command and reply

17

Table 3.23: Payload for Basic CAMAC command frame

Bit assignment | Bit name Description

D55..D48 CCEXE_N CAMAC station number
D47..D40 CCEXE_A CAMAC sub-address
D39..D32 CCEXE_F CAMAC function
D31..D24 0 (not used)

D23..D00 CCEXE_WDATA | Data to be written

Table 3.24: Payload for Basic CAMAC reply frame

Bit assignment | Bit name Description

D55..D48 CCEXE.N CAMAC station number
D47..D40 CCEXE_A CAMAC sub-address
D39..D32 CCEXE_F CAMAC function
D31..D24 CCEXESTAT CAMAC status
D23..D00 CCEXE_RDATA | Read Data

3.2.2 Basic CAMAC function

Figure 3.1 shows frame formats of CAMAC command and reply. It also includes CAMAC
Interrupt reply frame. For the basic CAMAC function, the command frame consists of
cmd as the frame header, station number N, sub-address A, function F and 24-bit data
24-bit DATA while the reply frame consists of reply as the frame header, station number
N, sub-address A, function F, status STAT and 24-bit data 24-bit DATA. Table 3.23
and 3.24 show the contents of payloads for the command frame and the reply frame,
respectively.
Table 3.25 shows the contents of CAMAC status in the reply frame.

3.2.3 CAMAC LAM Interrupt

Figure 3.1 shows the frame format of the CAMAC LAM interrupt reply frame. It consists
of reply as the frame header and 24-bit LAM pattern. If the bit 0 of the LAM pattern
is set, it means that the CAMAC module at the CAMAC station 1 generates a LAM

Table 3.25: CAMAC status

Bit assignment | Bit name Description

D31 CCEXE_STAT FSTC Fast Cycle mode

D30 0 (not used)

D29 CCEXE_STAT_LSUM indicating LAM exists

D28 CCEXE STAT_IE indicating LAM interrupt is enable
D27 0 (not used)

D26 CCEXE_STAT_INHIBIT | indicating CAMAC INHIBIT is set
D25 CCEXE_STAT X CAMAC X

D24 CCEXE_STAT Q CAMAC Q

18

Table 3.26: Payload for CAMAC LAM Interrupt reply frame

Bit assignment | Bit name Description
D55..D24 0 (not used)
D23..D00 CCLAM_PATTERN | Read LAM pattern

DAQ Frame Format

64-bit fixed-length
DAQ function(read event counter)

X

cmd joPCD

RX

rply [oPCD STAT| 32-bit Event Counter
|Headerl[= Payload ‘J|

OPCD : DAQ operation code (clear event count, clear busy-out...)
STAT : status (busy-out...)

RX DAQ function(Trigger Interrupt)

rply 32-bit Event Counter

Figure 3.2: Frame formats of DAQ command and reply

interrupt while that at the station 23 generates the interrupt if the bit 22 is set.

3.2.4 DAQ function

Figure 3.2 shows frame formats of DAQ command and reply. It also includes DAQ
Trigger Interrupt reply frame. For the DAQ function, the command frame consists of
cmd as the frame header and a control byte OPCD. The reply frame consists of reply
as the frame header, a DAQ control byte OPCD, a DAQ status byte STAT and 32-bit
Event Counter. Table 3.27 and 3.29 show the contents of payloads for the command
frame and the reply frame, respectively.

Table 3.28 shows the contents of a DAQ control byte. When the value 2 is set,
the event counter becomes zero. After enabling the DAQ trigger interrupt by setting 3
into the value, the event counter will increment if the interrupt is input from TRIG-IN
LEMO connector at the front panel of the pipeline CAMAC controller. At the moment,

19

Table 3.27: Payload for Basic DAQ command frame

Bit assignment | Bit name Description
D55..D48 DAQEXE_CTRL | DAQ Control bits
D47..D40 0 (not used)
D39..D00 0 (not used)

Table 3.28: DAQ control

Value of OPCD | Value name Description

0x00 DAQEXE_CTRL_READ Read Event Counter

0x01 DAQEXE_CTRL_CLRBSY Clear Busy-Out signal

0x02 DAQEXE_CTRL_CLRCNT Clear Event Counter

0x03 DAQEXE_CTRL_ENABLE Enable DAQ trigger interrupt

0x04 DAQEXE_CTRL_DISABLE Disable DAQ trigger interrupt (default)
0x05 DAQEXE_CTRL_PLSOUT Enable output pulse at BSY-OUT connector
0x06 DAQEXE_CTRL.NOFRAME | Disable generating interrupt frame (default)
0x0A DAQEXE_CTRL_WAITTRIG | Wait for a trigger interrupt

the Busy-Out signal will be also generated at BUSY-OU'T LEMO connector at the front
panel. After that, the DAQ trigger interrupt does not occur even if the interrupt is input.
To enable next interrupt, Busy-Out should be reset by setting 1 into the value.

If DAQEXE_CTRL_PLSOUT is set, the behavior of the signal generation at at BSY-
OUT connector will change. When a DAQ trigger occurs, Busy-Out signal is not gener-
ated. Instead, a output pulse will be generated when DAQEXE_CTRL_CLRBSY bit is
set. The pulse width is 40 nsec.

The aim of this mode is as follows; If the normal mode is used, BUSY-OUT signal
will be generated and used for veto to next trigger. However, the timing of the trigger
input and the BUSY-OUT slightly change. For arranging the timing precisely, another
veto signal will be used instead of the BUSY-OUT signal in normal mode. For setting the
veto off, this mode is used. When clearing BUSY-OUT, a 40 nsec pulse will be generated.
It sets the veto off.

A DAQ status DAQEXE_STAT _TRIGIN indicates the existence of a DAQ trigger
input. The bit will be set when the trigger is input even if the trigger is not enabled.

Table 3.29: Payload for Basic DAQ reply frame

Bit assignment | Bit name Description
D55..D48 DAQEXE_CTRL DAQ Control bits
D47..D40 0 (not used)
D39..D32 DAQEXE_STAT DAQ Status bits
D31..D00 DAQEXE_COUNT | Read Event Counter

20

Table 3.30: DAQ Status

Bit assignment | Bit name Description

D39..D36 0 (not used)

D35 DAQEXE_STAT_PLSOUT Pulse-out mode

D34 DAQEXE_STAT _TRIGIN DAQ trigger input

D33 DAQEXE_STAT_ENTRIGIN | Enable Trigger interrupt
D32 DAQEXE_STAT BSY Busy-Out

Table 3.31: Payload for DAQ Trigger Interrupt reply frame

Bit assignment | Bit name Description
D55..D32 0 (not used)
D31..D00 DAQINT_COUNT | Event Counter

3.2.5 DAQ Trigger Interrupt

Figure 3.2 shows frame formats of DAQ trigger interrupt reply frame. Table 3.31 shows
the contents of the payload. The reply frame consists of reply as the frame header and
the 32-bit event counter.

3.3 Operation procedure

In the following sub-section, basic operation procedures of PIO, DMA and Interrupt to
CPU are described. They do not explain real programs used in the device driver, but just
show how to manipulate the PCI registers briefly.

3.3.1 PIO

For PIO, Datal and Data2 registers for Tx and Rx are used for the data path. The Status
and FifoCount registers for Tx and Rx are used for the control path. It is assumed that
TxFifoCount and RxFifoCount are zero. This means there is no frame in the TxFIFO
and the RxFIFO. The lower 32-bit word of command frame should be put into TxDatal
register first. At the moment, the command frame is not sent to the CAMAC control
unit. When upper 32-bit word of the command frame is put into TxData2 register,
the command frame will be sent to CAMAC via CSP. If the transfer to CAMAC is
done successfully, TS_ DONE FRAME bit in TxStatus register will be set. Otherwise,
TS_TIMEOUT_FRAME will be set. This means there is no CAMAC response. After the
CAMAC execution, the reply frame will be stored into the RXFIFO in the PCI control
unit. At the moment, the contents of RxFifoCount will be a value 2. This means there is
a reply frame in the RxFIFO. For the read-out, RxDatal register should be read first. It
includes the lower 32-bit word of reply frame. At the same time, the upper 32-bit word of
the reply frame will be latched into the RxData2 register. When the data are read out,
RxFifoCount will be decremented by 2. Thus, the upper 32-bit word can be read from
the RxData2 register anytime. When the RxFIFO is empty and the RxDatal register is

21

read, RS TIMEOUT_FRAME bit in the RxStatus register will be set. This means the
operation failed.

3.3.2 DMA

There are several registers related to DMA operation to pipeline CAMAC controller. The
physical addresses of data buffers in Linux kernel are set into Address registers for Tx
and Rx. The frame counts are set into PresetCount registers for Tx and Rx. Control
registers for Tx and Rx are used to start the DMA operation, by setting TC_SRT_DMA
bit in TxControl register and RC_SRT_DMA bit in RxControl register. It is assumed
that TxFifoCount and RxFifoCount are zero. The following procedure is efficient for the
DMA operation. The DMA operation for Rx should start first. At the moment, nothing
happens because there is no reply frame in the RxFIFO. After starting the DMA, do not
wait for the completion of the DMA. Instead, Tx DMA operation should start next. After
the Tx DMA operation starts, command frames will be sent to CAMAC control unit. the
control unit executes the command frames and then sends the reply frames to PCI control
unit. As the result, the reply frames will be sent to Linux kernel buffer as soon as they
are stored into the RXFIFO, because Rx DMA operation already starts.

3.3.3 Interrupt

There are two groups of interrupt sources. One is for DMA operations. Another is for
external interrupt sources. Enabling, disabling and clearing the interrupts are done on
Control registers for Tx, Rx and Int while the Status registers shows current status of the
interrupt sources.

There are lots of interrupt sources for the DMA operation. An important interrupt is
packet end interrupt. The interrupt occurs when the PresetCount register exhausts or the
value becomes zero. The related bits in TxControl register are TC_INT_ENABLE _PKT_END
bit in TxControl register for enabling the packet end interrupt of Tx and TC_CLR_PKT_END
bit in the register for clearing it. To disable the interrupt, TC_INT_ENABLE_PKT_END
bit should be reset. The related bits in Rx Control register are similar to that in Tx
Control register.

For external interrupt sources, the interrupt occurs when a reply frame comes into the
IntFIFO first after the contents of the IntFifoCount register is zero. When IC_INT_ENABLE
bit in IntControl register is set and an interrupt reply frame comes into the IntFIFO, the
interrupt occurs.

3.4 Special CAMAC Functions to pipeline CAMAC
controller

There are several CAMAC functions to CAMAC controller in Table 3.32. At Power-on
reset, those conditions are following. CAMAC Inhibit is set. Interrupt to CPU is disabled.
Fast Cycle is disabled. All bits in LAM Enable register are reset.

Fast Cycle mode ignores CAMAC S2 timing. When the mode is set, the CAMAC
cycle becomes 0.72 usec instead of 1.04 usec. Many CAMAC modules can work without

22

Table 3.32: Special CAMAC Function

Function Description
N(25).A(0).F(24) | Clear CAMAC Inhibit
N(25).A(0).F(26) | Set CAMAC Inhibit
N(25).A(1).F(24) | Disable Interrupt to CPU
N(25).A(1).F(26) | Enable Interrupt to CPU
N(25).A(2).F(24) | Disable Fast Cycle
N(25).A(2).F(26) | Enable Fast Cycle
N(25).A(0).F(16) | Generate CAMAC C
N(25).A(0).F(17) | Generate CAMAC Z
N(25).A(1).F(0) | Read LAM Enable register
N(25).A(1).F(16) | Write LAM Enable register

CAMAC S2 timing, but it is invalid operation for CAMAC protocol. The mode should
be used carefully.

23

Chapter 4

CAMAC Device Driver and the
Library

The CAMAC device driver is developed for only the pipeline CAMAC controller. There
are two kinds of CAMAC library developed for the controller. One is a general purpose
CAMAC library and a CAMAC library dedicated to the pipeline CAMAC controller.

4.1 Installation

The CAMAC device driver and the library are pre-installed at the purchase of the CAMAC
controller. The following instruction is not necessary if the Linux system is not destroyed.
The instruction is provided for the recovery process.

4.1.1 How to get the distribution kit
The device driver and the library is available at the following URLs.

e KEK online group : http://www-online.kek.jp/~ yasu/Parallel-CAMAC/

e TOYO corporation : http://www.toyo.co.jp/daq/index.html

4.1.2 How to compile and load the device driver

e Make a device driver and test programs.
The major number of the device is assumed to be 70. Thus, If it is not convenient,
Makefile file should be modified.

% cd /home/toyo/camac
% make clean; make

e Make the device files.
This makes a device file in /dev directory. The name is pccO.

% su
make device

24

e install the device driver in Linux kernel.

make install
e load the device driver.
/sbin/insmod pcc

e Make sure if it is successfully loaded.
If you can find, a message “PCC has been installed.”, it’s OK.

% /bin/dmesg

4.2 General Purpose CAMAC Library

The library is a general purpose CAMAC library. The user interface is common for all
CAMAC libraries KEK online group supports [17], [18], [19], [20], [21]. The CAMAC
library consists of the following function groups.

e Setup Functions
e CAMAC Functions
e CAMAC Single Actions

e Interrupt Handling

4.2.1 Setup Functions
camopen
e SYNOPSIS
#include “camlib.h”

int camopen(int crate);
int CAMOPEN(int crate);

¢ DESCRIPTION
camopen opens a CAMAC port to enable access.

e RETURN VALUE
On success of camopen, zero is returned. If failed, a negative value is returned.

25

camcls

e SYNOPSIS
#include “camlib.h”

int camcls(int crate);
int CAMCLS(int crate);

¢ DESCRIPTION
camcls closes the CAMAC port to disable access. crate is the number of crate to
be opened. For the pipeline CAMAC controller, it is not used.

e RETURN VALUE
On success of camcls, zero is returned. If failed, a negative value is returned.

4.2.2 CAMAC Functions
cgenz

e SYNOPSIS
#include “camlib.h”

int cgenz(int crate);
int CGENZ(int crate);

¢ DESCRIPTION
cgenz initializes the CAMAC port. crate specifies the crate to be accessed. For
the pipeline CAMAC controller, it is not used.

e RETURN VALUE
On success of cgenz, zero is returned. If failed, a negative value is returned.

cgenc

e SYNOPSIS
#include “camlib.h”

int cgenc(int crate);
int CGENC(int crate);

e DESCRIPTION
cgenc clears the CAMAC port. crate specifies the crate to be accessed. For the
pipeline CAMAC controller, it is not used.

¢ RETURN VALUE
On success of cgenc, zero is returned. If failed, a negative value is returned.

26

cseti

e SYNOPSIS
#include “camlib.h”

int cseti(int crate);
int CSETI(int crate);

¢ DESCRIPTION
cseti sets CAMAC INHIBIT on the CAMAC port. crate specifies the crate to be
accessed. For the pipeline CAMAC controller, it is not used.

¢ RETURN VALUE
On success of cseti, zero is returned. If failed, a negative value is returned.

cremi

e SYNOPSIS
#include “camlib.h”

int cremi(int crate);

int CREMI(int crate);

¢ DESCRIPTION
cremi removes CAMAC INHIBIT on the CAMAC crate. crate specifies the crate
to be accessed. For the pipeline CAMAC controller, it is not used.

¢ RETURN VALUE
On success of cremi, zero is returned. If failed, a negative value is returned.

4.2.3 CAMAC Single Action

camac

e SYNOPSIS
#include “camlib.h”

int camac(int crate, int n, int a, int f, int *data, int *q, int *x);
int CAMAC(int crate, int n, int a, int f, int *data, int *q, int *x);

e DESCRIPTION
camac accesses CAMAC modules in the CAMAC crate. crate specifies the number
of crate to be accessed. For the pipeline CAMAC controller, it is not used. There
are CAMAC station number n, CAMAC sub-address a, CAMAC function f and
data data. After calling the camac, the values of CAMAC Q q and CAMAC X x
are returned.

e RETURN VALUE
On success of camac, zero is returned. If failed, a negative value is returned.

27

4.2.4 Interrupt Handling
cenlam

e SYNOPSIS
#include “camlib.h”

int cenlam(int crate, int mask);
int CENLAM(int crate, int mask);

¢ DESCRIPTION
cenlam enables interrupt to CPU. crate specifies the crate to be accessed. For
the pipeline CAMAC controller, it is not used. When the bit of the value mask
is 1, it enables the corresponding CAMAC modules interrupt to CPU. The bit 0
corresponds to the CAMAC station 1 while the bit 23 does the station 24.

e RETURN VALUE
On success of cenlam, zero is returned. If failed, a negative value is returned.

cdslam

e SYNOPSIS
#include “camlib.h”

int cdslam(int crate):
int CDSLAM(int crate):

¢ DESCRIPTION
cdslam disables interrupt to CPU. crate specifies the crate to be accessed. For the
pipeline CAMAC controller, it is not used.

e RETURN VALUE
On success of cdslam, zero is returned. If failed, a negative value is returned.

cwtlam

e SYNOPSIS
#include “camlib.h”

int cwtlam(int crate, int timeout):
int CWTLAM(int crate, int timeout):

¢ DESCRIPTION
cwtlam waits for an interrupt from a CAMAC module. crate specifies the crate
to be accessed. For the pipeline CAMAC controller, it is not used. The time-out
time timeout is specified in unit of clock tick (normally, it 10 msec, but it depends
on Linux kernel configuration). When the value is less than 1, the default value is
applied.

¢ RETURN VALUE
On success of cwtlam, zero is returned. If failed, a negative value is returned.

28

4.3 CAMAC Library dedicated to pipeline CAMAC
controller

There are five kinds of subroutine groups in the CAMAC library.
e CAMAC/DAQ command frame generators

PIO executor

Block I/O executor

Wait routines for Trigger and LAM Interrupts

CAMAC/DAQ reply frame Extractor

CAMAC/DAQ command frame generators generates CAMAC or DAQ command
frame by giving CAMAC or DAQ parameters such as N (station number), A (sub-address),
F (function) and so on. Those command frames are stored into a user-specified buffer
with a CAMAC frame buffer structure.

PIO executor executes command frames in the buffer in Programmed I/O. The ex-
ecutor gets command frames from the buffer and then stores reply frames into another
user-specified buffer.

Block I/O executor executes the frames in the buffer in DMA mode. The executor gets
command frames from the buffer and then stores reply frames into another user-specified
buffer.

”"Wait routines for Trigger and LAM Interrupts” is for waiting an interrupt from
CAMAC or DAQ.

CAMAC/DAQ reply frame Extractor extracts data and CAMAC status such as Q
and X from the buffer including reply frames.

4.3.1 CAMAC frame buffer structure
The CAMAC frame buffer structure is shown in Figure 4.1.

Table 4.1: CAMAC frame buffer structure

Offset(32-bit) | Item Description

0 Total buffer length Unit is 64-bit.

1 Actual buffer length of frames Unit is 64-bit word
2 Start address of frames

N End address of the frame buffer

The unit of data in the frame buffer is 32-bit (4 bytes) while the size of frame is
64-bit (8 bytes). This means the actual buffer length increases 2 when a frame is stored
into the buffer. There are four types of frame, a first CAMAC/DAQ frame, a normal
CAMAC/DAQ frame, a end CAMAC/DAQ frame and a packet CAMAC/DAQ frame.
The packet CAMAC frame includes a CAMAC/DAQ frame in a packet. The packet

29

can include multiple CAMAC/DAQ frames while the first frame should be the first CA-
MAC/DAQ frame, the end frame should be the end CAMAC/DAQ frame and the normal
frame should be between the first frame and the end frame.

4.3.2 CAMAC/DAQ command frame generators
There are two kinds of subroutines for generating frames for CAMAC and DAQ.

cam_gen _init

e SYNOPSIS
#include “pcc.h”

int cam_gen _init(int length, int* buf);

e DESCRIPTION
cam_gen_init() initializes the frame buffer buf. Actually, the total buffer length
will be filled with length the buffer and the actual buffer length will be filled with
zero. length is specified with unit of 64-bit frame size.

e RETURN VALUE
cam_gen _init() always returns zero as success.

e ERRORS There is no error.

cam. _gen_cc

e SYNOPSIS
#include “pcc.h”

int cam_gen_cc(int *buf, int n, int a, int f, int data);

e DESCRIPTION
cam_gen_cc() generates a CAMAC frame from n, a, f and data and then stores
the frame into buf. The start/end bits in the frame are automatically generated.

e RETURN VALUE
On success of cam_gen _cc(), zero is returned. If n, a or f is invalid, -1 is returned.
When there is no space to store the frame in the frame buffer, -2 is returned.

cam_gen_daq
e SYNOPSIS
#include “pcc.h”

int cam_gen_daq(int* buf, int cmd);

e DESCRIPTION
cam_gen_daq() generates a DAQ frame from cmd. The start/end bits in the frame
are automatically generated.

30

¢ RETURN VALUE
On success of cam_gen _daq(), zero is returned. If cmd is invalid, -1 is returned.
When there is no space to store the frame in the frame buffer, -2 is returned.

4.3.3 CAMAC open/close
cam._open

e SYNOPSIS
#include “pcc.h”

int cam_open(void);

¢ DESCRIPTION
cam_open() opens a CAMAC device and gets the file descriptor.

e RETURN VALUE
On success of cam_open(), the file descriptor is returned. If -1 is returned, it is
open error.

cam_close

e SYNOPSIS
#include “pcc.h”

int cam_close(int fd);

e DESCRIPTION
cam _close() closes the CAMAC device.

e RETURN VALUE

4.3.4 PIO routines

PIO stands for Programmed Input Output. Those routines does not use Direct Access
Method (DMA). Instead, CPU puts command frames and then gets reply frames. This
method is simple and less of the initiation overhead while it consumes CPU power and
its speed is rather than that of DMA.

cam_put

e SYNOPSIS
#include “pcc.h”

int cam_put(int fd, int data, int cmd);

31

¢ DESCRIPTION
cam_put() writes a command frame from data and cmd into the CAMAC con-
troller. The operation checks Tx FIFO count. If the count is full and timeout count
exhausts, it fails.

e RETURN VALUE
On success of cam_put, zero is returned. Otherwise, -1 is returned.

cam_get

e SYNOPSIS
#include “pcc.h”

int cam_get(int fd, int* data, int* rply);

¢ DESCRIPTION
cam _get() reads a reply frame from the CAMAC controller and then stores into
data and reply. The operation checks if Rx FIFO count is empty or not. If the
count is empty and timeout count exhausts, it fails.

¢ RETURN VALUE
On success of cam_read_pio, zero is returned. Otherwise, -1 is returned.

cam_exec_pio

e SYNOPSIS
#include “pcc.h”

int cam_exec_pio(int fd, int* emdbuf, int* rplybuf);

¢ DESCRIPTION

cam_exec_pio() executes command frames in the frame buffer cmdbuf and then
stores the reply frames into the frame buffer rplybuf. The operation checks Rx
FIFO and Tx FIFO. The operation on Tx and Rx are done concurrently. When Tx
FIFO is not full and the command frames to be transferred remains, the command
frame is sent while the reply frames is read when Rx FIFO is not empty. The
timeout is checked. The maximum number of command frames to be transferred is
16K (1K=1024) frames.

e RETURN VALUE

cam_single_cc

e SYNOPSIS
#include “pcc.h”

int cam_single_cc(int fd, int n, int a, int f, int *data, int *q, int *x);

32

¢ DESCRIPTION
cam single cc() executes a single CAMAC frame specified by station number n,
sub-address a, function f and data data. It returns data, q and x.

e RETURN VALUE

cam_single_daq

e SYNOPSIS
#include “pcc.h”

int cam_single daq(int fd, int func, int *data);

¢ DESCRIPTION
cam single daq() executes a single DAQ frame specified by DAQ function func.
It returns data if required.

e RETURN VALUE

4.3.5 Block I/0 routines

Block I/O routes use DMA. After initiating PCI master engine on PCI control unit of
CAMAC controller, the engine transfers data between the controller and CPU memory,
without CPU intervention. The advantage of DMA is that it gains high throughput, but
the initiation overhead is rather larger than that of PIO.

cam_exec_dma

e SYNOPSIS
#include “pcc.h”

int cam_exec_dma(int fd, int* cmdbuf, int* rplybuf);

e DESCRIPTION
cam_exec_dma executes the command frames in the command frame buffer cmnd-
buf and then stores the results into the reply frame buffer rplybuf. cam_exec_dma
issues read function first and then write function. As the result, maximum com-
mand frames(16k frames) can be sent and maximum reply frames (16k frames) can
be received at once.

e RETURN VALUE

cam_exec_dma_seq

e SYNOPSIS
#include “pcc.h”

33

int cam_exec_dma_seq(int fd, int* cmdbuf, int* rplybuf);

¢ DESCRIPTION
cam_exec_dma_seq executes the command frames in the command frame buffer
cmdbuf and then stores the results into the reply frame buffer rplybuf. cam_exec_dma_seq
issues write function and read function sequentially. As the result, maximum FIFO
frames (120 frames) can be sent and maximum reply frames (120 frames) can be
received at once. Therefore, cam_exec_dma_seq repeats the above sequence up to
the specified number of command frames.

e RETURN VALUE

4.3.6 Combined routine

Combined routine uses not only DMA but also PIO. The executor takes both advantages
of DMA and PIO. In small number of frames to be executed, the executor chooses PIO
method while it chooses DMA in the large number of frames. The cross point is determined
by the performance measurement.

came._exec

e SYNOPSIS
#include “pcc.h”

int cam_exec(int fd, int* ecmdbuf, int* rplybuf);

e DESCRIPTION
cam_exec() executes command frames in the frame buffer cndbuf and then stores
the reply frames into the frame buffer rplybuf. cam exec() switches the transfer
mode according to the specified number of command frames. If the number reaches
NUM_FRAME_SWITCH, cam_exec() will switch the transfer from in PIO mode
to in DMA mode.

e RETURN VALUE

4.3.7 Interrupt handling routines for Trigger and LAM Inter-
rupts
e SYNOPSIS
#include “pcc.h”

int cam_enable_lam(int fd, int enable_pattern);

¢ DESCRIPTION
cam_enable_lam() enables CAMAC LAM interrupt. enable_pattern is used
for individual stations. The bit 0 corresponds to CAMAC station 1 while the

34

bit 22 corresponds to the station 23. This routine should be called just before
cam_wait_lam().

e RETURN VALUE

e SYNOPSIS
#include “pcc.h”

int cam_disable lam(int fd);

e DESCRIPTION
cam_disable lam() disables CAMAC LAM interrupt.

e RETURN VALUE

e SYNOPSIS
#include “pcc.h”

int cam_wait_lam(int fd, int* lam_pattern, int timeout);

¢ DESCRIPTION
cam_wait_lam() waits for a CAMAC LAM interrupt. If the interrupt occurs, the
LAM pattern will be stored into lam_pattern.

e RETURN VALUE

e SYNOPSIS
#include “pcc.h”

int cam_enable_trig(int fd);

e DESCRIPTION
cam_enable_trig() enables event trigger. This routine should be called just before
cam_wait_trig().

e RETURN VALUE

e SYNOPSIS
#include “pcc.h”

int cam_disable_trig(int fd);

e DESCRIPTION
cam_disable_trig() disables event trigger.

e RETURN VALUE

35

e SYNOPSIS
#include “pcc.h”

int cam_wait_trig(int fd, int* event_count);

e DESCRIPTION
cam_wait_trig() waits for an event trigger. If the interrupt occurs, current event
counter will be stored into event_count.

e RETURN VALUE

4.3.8 CAMAC/DAQ reply frame extraction routines
cam_extract_cc_data

e SYNOPSIS
#include “pcc.h”

int cam_extract_cc_data(int* rplybuf, int len, int* actuallen, int* data);

e DESCRIPTION
cam_extract_cc_data() extracts array of data from a reply frame buffer rplybuf
and then stores the data into the array data. The specified len is a total length of
data array data. Not only data but also the actual length actuallen of frames in
the frame buffer are returned.

e RETURN VALUE

cam_extract_cc_status

e SYNOPSIS
#include “pcc.h”

int cam_extract_cc_status(int* rplybuf, int len, int* actuallen, int™* status);

¢ DESCRIPTION
cam_extract_cc_status() extracts array of status including CAMAC Q and CA-
MAC X from a reply frame buffer rplybuf. The specified len is a total length of
status array status. Not only status but also the actual length actuallen of frames
in the frame buffer are returned.

e RETURN VALUE

cam_extract_cc_qx

e SYNOPSIS
#include “pcc.h”

36

int cam_extract_cc_qx(int status, int* q, int* x);

¢ DESCRIPTION
cam_extract_cc_gx extracts CAMAC Q q and CAMAC X x from a status status.

e RETURN VALUE

cam_extract_daq_data

e SYNOPSIS
#include “pcc.h”

int cam_extract_daq-data(int™ rplybuf, int len, int* actuallen, int* data);

¢ DESCRIPTION
cam_extract_daq-data() extracts array of data from a reply frame buffer rplybuf
and then stores the data into the array data. The specified len is a total length of
data array data. Not only data but also the actual length actuallen of frames in
the frame buffer are returned.

e RETURN VALUE

4.4 Examples

4.4.1 Tools

rst_cam command

The rst_cam command resets FPGAs in the pipeline CAMAC controller. The command
does not clear the FIFOs.

1 % ./rst_cam

clr_fifo command

The clr_fifo clears all FIFOs in the pipeline CAMAC controller.
1 % ./clr_fifo

dump_reg command

The dump_reg command dumps contents of PCI I/O registers. It does not include
contents of Tx Datal, Tx Data2, Rx Datal and Rx Data2.

37

1 % ./dump_reg

2 Tx Control =0

3 Tx Status =1

4 Tx Address = £680000
5 Tx Preset Count = a

6 Tx Actual Count = 0

7 Tx Fifo Count =0

8 Rx Control =0

9 Rx Status =1

10 Rx Address = £640000
11 Rx Preset Count = a

12 Rx Actual Count = a

13 Rx Fifo Count =0

14 System = 83000000

cam command

The cam command is a simple CAMAC access command using PIO. The procedure is as

follows;

1 % ./cam

2 usage : ./cam n a f [data]
3 % ./cam 4 0 16 Oxffffff

4 Q=1:X=1

5 % ./cam 4 0 0

6 Q=1:X=1: data = ffffff
7 % ./cam 4 0 16 Oxaaaaaa

8 Q=1:X=1

9 % ./cam 4 0 9

10 =0 :X=1

The n is CAMAC station number. a is CAMAC sub-address. fis CAMAC function.
data has 24-bit width and it should be put in Hex. Q is CAMAC Q and X is CAMAC
X.

gen_cam command

The gen_cam command generates a command frame from station number n, sub-address
a, function f, data data and a flag flag for the command frame, as follows;

1 % ./gen_cam
2 usage : ./gen_cam n a f data flag(l:start,2:end,0:normal,packet:others)
3 % ./gen_cam 4 0 16 0x555555 1

38

4 Datal
5 Data?2

555555 (hex)
c0040010 (hex)

The Datal and Data2 corresponds to TxDatal/RxDatal and TxData2/RxData2, re-
spectively.

dec_cam command

The dec_cam command extracts station number n, sub-address a, function f, data data
and status status from Datal and Data2.

% ./dec_cam

usage : ./dec_cam datal(hex) data2(hex)

% ./dec_cam 0x3555555 0xC0040010

n(4) a(0) f(16) data(0x555555) status(0x3)

D w NN -

put_cam command

1 % ./put_cam
2 usage : ./put_cam data(hex) cmd(hex)
3 ./put_cam 0x55555 0xc0040010

get_cam command

1 % ./get_cam

2 data = 0x55555 : reply = 0xC0040000

4.4.2 Check programs
examO
The program examO checks basic CAMAC operations in Programmed I/0O. It includes

7, C, SetInhibit, Remotelnhibit, Disablelnt, EnableInt, WriteEnableBit, ReadEnableBit,
SetFastCycle, ResetFastCylce and Read/Write/NDT to a Switch register.

1 % ./examO

2 number of reply frames : 13

3 (1D z: data(4000000) = 4000000 rply(c0190011) c0190011
4 (2)C: data(4000000) = 4000000 rply(80190010) 80190010
5 (3) set Inhibit : data(4000000) = 4000000 rply(8019001a) 8019001a
6 (4) remove Inhibit : data(0) = 0 rply(80190018) = 80190018
7 (5) disable interrupt : data(ffffff) = ffffff rply(80190118) 80190118
8 (6) enable interrupt : data(l0ffffff) = 10ffffff rply(8019011a) = 8019011a
9 (7) write enable bits : data(10ffffff) = 10ffffff rply(80190110) 80190110
10 (8) read enable bits : data(l0ffffff) = 10ffffff rply(8019011a) = 8019011la

39

11 (9) set fast cycle : data(90000000) = 90000000 rply(8019021a) = 8019021a
12 (10) reset fast cyclc : data(10000000) = 10000000 rply(80190218) = 80190218
13 (11) write data to SW : data(13000000) = 13000000 rply(80040010) = 80040010
14 (12) read data from SW : data(l3aaaaaa) = 13aaaaaa rply(80040000) = 80040000
15 (13) clear data in SW : data(12000000) = 12000000 rply(a004000a) = a004000a

examl

The program examl executes CAMAC write/read operations in Programmed I/O and
DMA to Switch register. The 4 types of processes are available. cam_exec_pio (default)
for PIO. cam_exec_dma, cam_exec_dma_seq and cam_exec for DMA. There are 4
data patterns to be written/read/checked. One is a series of data pattern of alternative
OxFFFFFF and 0. Another is a series of data pattern of alternative OxFFFFFF, 0,
0x555555, 0OxAAAAAA and 0. Third one is a series of data 0, 1, 2, and so on. Final one
is a series of random number. The values of the parameter pattern are 0, 1, 2 and 3
according to the order of above explanation. The default value is 1.

1 % ./examl

2 usage : ./examl process:0 [pattern:1] [loop:1] [num_frame] [fast]
3 process 0: cam_exec_pio (default)

4 process 1: cam_exec_dma

5 process 2: cam_exec_dma_seq

6 process 3: cam_exec

7 pattern 0: a series of data (OxFFFFFF, 0)

8 pattern 1: a series of data (OxFFFFFF, 0, 0x555555, 0O, OxAAAAAA) (default)
9 pattern 2: a series of data (0,1,2,3,4,5...)

10 pattern 3: a series of random data

11 loop : iteration count to be executed (default = 1)
12 num_frame: number of frame to be executed (default = 10)
13 fast : fast cycle:1 normal cycle:0 (default = 0)

14 9 ./examl 0 2 10 100

15 Start CAMAC access to Switch register...

16 100 command frames...

17 Execution with loop = 10

18 examl has been done successfully

19 %

exam?2

The program exam2 checks basic DAQ operations in Programmed I/O. It includes read
event count, clear busy-out, clear event counter, enable/disable trigger input, set pulse
out and reset pulse out.

40

1 % ./exam2

2 number of reply frames : 8

3 read event count : data(
4 clear busy out : data(
5 clear event counter : data(
6 enable trigger input : data(
7 disable trigger input: data(
8 set pulse out : data(
9 reset pulse out : data(
exam3

0)
0)
0)

0)
0)
0)

O O O O O O ©

rply (d0000000)
rply (90010000)
rply (90020000)
rply (90030002)
rply(90040000)
rply (90050008)
rply (b0060000)

d0000000
90010000
90020000
90030002
90040000
90050008
b0060000

The program exam3 checks CAMAC LAM Interrupt operations in Programmed 1/0.

You should put NIM signal into LEMO connector of Interrupt register.

O© 00 N O O & W N =

= e
= O

% ./exam3 10

Loop
Loop
Loop
Loop
Loop
Loop
Loop
Loop
Loop
Loop

exam4

count
count
count
count
count
count
count
count
count
count

: LAM pattern =
: LAM pattern =
: LAM pattern =
: LAM pattern =
: LAM pattern =
: LAM pattern =
: LAM pattern =
: LAM pattern =
: LAM pattern =
10 : LAM pattern = 2

© 00 N O O W N =
NN NN DN DNDDNDDNDN

The program exam4 checks DAQ Trigger Interrupt operations in Programmed I/0. You
should put NIM signal into LEMO connector of TRIG-IN at the CAMAC controller.

O© 0 N O O b W N =

= e
= O

% ./exam4 10

Loop
Loop
Loop
Loop
Loop
Loop
Loop
Loop
Loop
Loop

count
count
count
count
count
count
count
count
count

count

: Event count =
: Event count =
: Event count =
: Event count =
: Event count =
: Event count =
: Event count =

: Event count =

© 00 N O O b W N =
© 00 N O O b W N -

: Event count =
10 : Event count = 10

41

4.5 Programming

The section introduces how to use the CAMAC library dedicated to pipeline CAMAC
controller. The general purpose CAMAC library is traditionally used. It is easy to under-
stand how to use the library. However, the dedicated library is a little bit complicated.

4.5.1 Command frame generation

First, CAMAC command frames are generated by using the command frame generator
like this;

1 if((status = cam_gen_init(length, cmdbuf)) == -1) {

2 printf(‘‘cam_gen_init error...\n’’);

3 exit (0);

4 }

5 if((status = cam_gen_cc(cmdbuf, 25, 0, 17, 0)) == -1) { // Z
6 printf(‘ ‘cam_gen_cc error ...\n’’);

7 exit (0);

8 }

cam_gen _init in the line 1 initializes a command buffer cmdbuf, which length is specified
by length. cam_gen_cc in the line 5 generates a command frame from N(25), A(0), F(17)
and Data(0). The frame is stored into the command buffer cmdbuf. The frame header
is automatically generated. You can call another cam_gen_cc routine for a CAMAC
command frame or DAQ command frame by calling cam_gen_daq routine. If you want
to finish generating command frames, you can do it anytime. You do not care of the frame
header while the generator automatically makes first frame header, end frame header and

SO On.

4.5.2 Command frame execution

After calling the command frame generator, a CAMAC open routine and CAMAC/DAQ
execution routines such as for PIO routine should be called.

1 if ((fd = cam_open()) == -1) {

2 printf(‘ ‘cam_open error\n’’);

3 exit (0);

4 }

5 if((status = cam_exec_pio(fd, cmdbuf, rplybuf)) < 0) {
6 printf(‘‘cam_exec_pio error\n’’);

7 exit (0);

8

42

cam_open opens CAMAC and then get a file descriptor. The file descriptor is used
for other routines to identify the CAMAC port. cam_exec_pio executes the command
frames in cmdbuf in PIO mode and then stores the reply frames into a reply frame buffer
rplybuf. If you want to execute in DMA mode, cam_exec_dma or cam_exec_dma_seq
should be called. The former starts read DMA first and then executes write DMA while
the latter executes write DMA and then does read DMA next. The latter operation
depends on the total FIFO size in PCI control unit, but the former does not.

The execution performance of PIO and DMA depends on the calling overhead and the
execution speed. On one hand, the PIO operation has small overhead while the DMA
operation has much overhead. On the other hand, the execution speed of the DMA is
faster than that of the PIO. When the frame length is small, the PIO operation is better.
When the frame length increases, the DMA operation is superior. The combine routine
of the PIO and the DMA operations is provided. cam_exec is used for this purpose.

4.5.3 Data and status extractions

After the operation, you can extract CAMAC/DAQ data and the status from reply frames
in reply frame buffer.

status = cam_extract_cc_data(rplybuf, len,
&actual_length, databuf);
status = cam_extract_cc_status(rplybuf, 1len,
&actual_length, statusbuf);
cam_extract_cc_qx(statusbuf[0], &q, &x);

a o> W N -

status

cam_extract_cc_data in the line 1 copies data in rplybuf of length len into a data buffer
databuf. The actual length of data is returned into actual length. cam_extract_cc_status
copies status in rplybuf of length len into a status buffer statusbuf. The status in the
status buffer includes CAMAC Q and CAMAC X if the frame is CAMAC reply frame.
Thus, you can extract the Q and the X by using cam_extract_cc_qgx.

Finally, CAMAC close routine cam_close is called.

4.5.4 Interrupt handling
There are two type of interrupt handling. One is CAMAC LAM interrupt. Another is
DAQ trigger interrupt.

CAMAC LAM interrupt

The following procedure is an example of handling CAMAC LAM interrupt. Clear inter-
rupt at Interrupt register first in line 2. The function 9 is used. Next, enable interrupt
at CAMAC controller in line 4. In the example, All CAMAC stations are enabled by
specifying the mask value of OxXFFFFFF. Then, enable interrupt at the Interrupt register

43

in line 6 and wait for an interrupt from the register in line 8. Finally, disable interrupt

at the Interrupt register in line 10. You may disable interrupt at the CAMAC controller,

but it is not necessary in this example.

O© 00 N O O b W N =

(=Y
o

// clear interrupt at Interrupt register

status = cam_single_cc(fd, INTREG, O, 9, &data, &q, &x);
// enable interrupt at the controller

status = cam_enable_lam(fd, OxFFFFFF);

// enable interrupt at Interrupt register

status = cam_single_cc(fd, INTREG, O, 26, &data, &q, &x);
// wait for a CAMAC LAM interrupt

status = cam_wait_lam(fd, &lam_pattern, TIMEQUT);

// disable interrupt at Interrupt register

status = cam_single_cc(fd, INTREG, O, 24, &data, &q, &x);

DAQ trigger interrupt

The procedure for DAQ trigger interrupt is rather simple. Enable the interrupt first in line

2. Then, wait for an interrupt in line 4. After an interrupt occurs, disable the interrupt

in line 6. Finally, clear the busy-out signal in line 8. Even if multiple triggers occur, any

interrupt does not occur and event counter is not incremented before the busy-out signal

is cleared.

1 // enable DAQ trigger interrupt

2 status = cam_enable_trig(fd);

3 // wait for an interrupt

4 status = cam_wait_trig(fd, &event_count, TIMEQOUT);

5 //disalbe the interrupt

6 status = cam_disable_trig(fd);

7 // clear busy out

8 status = cam_single_daq(fd, DAQEXE_CTRL_CLRBSY, &data, &daq_status);

44

Chapter 5

Linux System

The choice of a suitable Operating System (OS) for PC compatible hardware is dependent
on the expected functionality. Since the software tools, like compilers and utilities are,
Open Source Software / GNU products, a commodity Open Source OS, Linux is chosen. A
Linux distribution kit tailored by KEK is implemented for the pipeline CAMAC controller.

The board computer has a flash disk. The Linux system on the board computer can
boot from the flash disk. However, the flash disk has a limited life expectancy. The
life expectancy is measured in the number of erase cycles. Linux frequently erases the
directories of /var and /tmp. Thus, they are implemented as RAM disk.

There are some application programs using CAMAC. One is a set of examples to use
CAMAC device driver / the library. The examples show the usage of all subroutines in
the library. Another is an example for Java programming using the library. The program
shows the usage of the library for WEB application. The other is a simple remote access
program written in C language. The program is useful to use the library on the board
computer from a remote machine.

Finally, the recovery procedure is introduced. If the flash disk is erased by some reason,
new Linux system should be installed on the flash disk. The procedure is described. There
is a CD-ROM KNOPPIX installed. The CD-ROM includes not only KNOPPIX-based
Linux system but also the flask disk-based Linux system including CAMAC utility. The
PC run KNOPPIX system is necessary. The operation manual of the pipeline CAMAC
controller[16] explains them in detail.

5.1 Linux Installation using KNOPPIX CD includ-
ing CAMAC utility

The following hardwares are necessary.
e PC can run KNOPPIX 3.2 with USB

e USB compact flash reader/writer

45

e KNOPPIX 3.2 CD-ROM including CAMAC utility

e 512 MB flask disk

5.1.1 How to get the distribution kit

KNOPPIX 3.2 CD-ROM including CAMAC utility is supplied when the pipeline CAMAC
controller is purchased. The image of the CD is also given on the URL[22].

5.1.2 How to install Linux system
After KNOPPIX boots, login as root.

fdisk /dev/sda
command : m

command :
command :

command :

BT Qs

command :
region(1-4) : 1
(1-993) : 993
command : w
mke2fs -j /dev/sdal
mount -t ext3 /dev/sdal /mnt/sdal
cd /mnt/sdal
tar xzf /KNOPPIX/TOYO/compact.tar.gz
e2label /dev/sdal /
cd /mnt/sdal/sbin
./grub
grub> root (hd1,0)
grub> setup (hdl)
grub> quit

O© 0 N O O b W N =

R = S S S T
B W N~ O

= e
0 N O

= =
© o
H OH H OH OH H OH OH OH O H OH

10

The line 1-9 show the procedure to make a partition by using fdisk command. The mke2fs
command on the line 10 makes a ext3 file system. The flask disk connected to USB is
manipulated as a SCSI disk. The compact.tar.gz shown in the line 13 includes a flask
disk-based Linux system with CAMAC utility. The procedure shown in the line 14-19
including e2label and grub commands writes boot block for self-booting.

5.2 Application Software
Two application programs are provided in CC/NET CAMAC distribution kit.

46

5.2.1 Simple remote access programs written in C language

There are two programs, a client program and a server program. The server program runs
on CC/NET Linux system while the client program runs on any remote computer. The
communication protocol is based on TCP/IP socket. It does not adopt any middle-ware
such as CORBA and Java RMI. The communication library is written in C language.
The server program calls any routines of CC/NET CAMAC library according to the
request from the client program. The client program is as same as a CAMAC program
running on CC/NET Linux system. After the CAMAC program can run successfully
on CC/NET Linux system, the program can become the client program on any remote
computer without the modification of the program.

Here is a sample program included in the check programs of CC/NET CAMAC dis-
tribution kit, called cam. The following Makefile makes the server program called
ccnet_server and the client program called cam.

The following describes the software components.

e ccnet.h : An include file for ccnet

e ccnet_server.c : A main program of the server.

e dispatch.c : It calls CAMAC access routines in CC/NET CAMAC library for ac-
cessing the CAMAC and is used for the server program.

e clientlib.c : It emulates CC/NET CAMAC library for the client.

e message.c : A common message passing library. It is used for the server and client
programs.

A host name and a port number used in the client program should be assigned in the
ccnet.h. The following procedure is an example to run the server and client programs.

[server] % ./ccnet_server &

1
2
3 [client] % ./cam 4 0 16 Oxffffff
4 [client] Q =1 : X =1
5
6

o

[client] % ./cam 4 0 O
[client] Q =1 : X =1 : data = ffffff

5.2.2 Remote Access program using Java Remote Method In-
vocation (JavaRMI)

The WEB application program can access CAMAC modules from a remote machine.
The JavaRMI|[23] enables remote CAMAC access via a WEB server (Apache) running on

47

pipeline CAMAC controller. The application is a simple example program, but you can
extend the program easily for your own program.

When you build and run the program, the following components are additionally
necessary, namely, A WEB server called Apache and Java2 SDK Standard Edition called
J2SE including JavaRMI and JNI(Java Native Interface).

How to build

After installing Apache and the J2SE, you can check the Java version like this;

1 % java -version

2 java version ‘‘1.4.1_02’°

3 Java(TM) 2 Runtime Environment, Standard Edition (build 1.4.1_02-b06)

4 Java HotSpot(TM) Client VM (build 1.4.1_02-b06, mixed mode)
The following procedure is to make a serve-side program.

1 % cd /home/inoue/public_html/Web

2), make clean

3 rm -f *.class cam.h 1libMyImpOfcam.so *.o core *~

4 % make

5 javac web3.java

6 javac cam.java

7 javah -jni cam

8 gcc —c camac.c

9 gcc -0 -shared -I/usr/java/include -I/usr/java/include/linux \

cam.c camac.o -0 libMyImpOfcam.so
10 javac ServerImpl.java
11 rmic ClientImpl
12 rmic ServerImpl

How to run

On the setup of Apache, the file /etc/httpd/conf/httpd.conf should be edited and then
the line “ServerName onlsbcl.kek.jp:80” should be added for instance. Now let’s start
the Apache.

1 % /sbin/service httpd start

Server programs rmiregistry for JavaRMI and ServerImpl for CAMAC also run on the
pipeline CAMAC controller like this;

1 % export LD_LIBRARY_PATH=.:$LD_LIBRARY_PATH
2 % rmiregistry &
3) java ServerImpl &

48

A H -5 FEOINFEH A — Microsoft Internet Explorer
TLE REE FRW BRCANGE YD sFE :E‘-

On - O NEAG P @ @ 3% B- LD

FHELAD @Ep:_f}un\sbc].kek.jpﬁuue/\!u’ebf’web&html V! .f’l%ﬁtl L 2

CAMAC Command Execntion

{ Atberrti o ¥om vsed Taua Phagsin
o use thic exanple. Java Dhas-in

wrihle lots. The:
CAMAC Command:|3,0,0 et myres i ek AN
— comrrvrd and data and ewen poind the
Wiite Data (Hex) = |FFFF | | o | et e yom b <ollectad

(Fead). For exarple, ifyon enter
'S0 0" e CAMAC Comrmand sd
press "GO" oz, Won can get
MwssaZes o CAMAC device fh the
et area

RO, COCICIOET SO 1] — J&0

| »

(Write). For exorgle, ifyon eter
"3 2,16" a5 CARLAL Comnrand, T
ag e data, eud press "GO0 aton,
Vo can et mecsages fom CABIAT

dewdce m the becd srea

&] FFLub web3 started | ® [A—Fuk

Figure 5.1: GUI for CAMAC

Figure 5.1 shows a GUI for CAMAC on Internet Explorer. When you want to do
CAMAC read, you put N,AF data such as “3,0,0” into CAMAC command box. You can
get some messages including data in message box after clicking go button. For CAMAC
write, N,A F data and data to be written are put into the command box and Write data

box, respectively.

49

Chapter 6

Performance

6.1 Environment and setup for the measurement

For the measurement, three types of computers are used. One is the pipeline CAMAC
controller. It has Transmeta Crusoe 500 MHz processor. Another is a recent desktop
PC. It has Intel(R) Xeon(TM) 2.80GHz processor. The other is a typical VME board
computer. It has SPARC 300MHz processor. The detail of the specification is in Table
6.1. The operation system and the compiler are shown.

6.2 Imbench for Linux system performance measure-
ment

Imbench is a micro-benchmark suite designed to focus attention on the basic building
blocks of many common system applications, such as databases, simulations, software
development, and networking.

Imbench provides a suite of benchmarks that attempt to measure the most commonly
found performance bottlenecks in a wide range of system applications.

6.2.1 Timing issues

e Clock resolution: The benchmarks measure the elapsed time by reading the system
clock via the gettimeofday interface. To compensate for the coarse clock resolution,
the benchmarks are hand-tuned to measure many operations within a single time
interval lasting for many clock ticks.

e Caching: If the benchmark expects the data to be in the cache, the benchmark
is typically run several times; only the last result is recorded. If the benchmark
does not want to measure cache performance it sets the size parameter larger than
the cache. For example, the bcopy benchmark by default copies 8 megabytes to 8
megabytes, which largely defeats any second-level cache in use today.

20

Table 6.1: Environment and setup for the performance measurement

System CPU Operating System C Compiler
CAMAC Advantech PCM-9370, | Linux kernel 2.4.18-27.8.0, | gcc version
controller Transmeta Crusoe 500 MHz | based on Red Hat Linux 8.0 | 3.2

processor, TMb5400 proces-

sor, 310MB main memory,

256 KB L2 cache memory
Desktop PC | Intel(R) Linux kernel 2.4.18- | gcc version

Xeon(TM) CPU 2.80GHz, | 27.7.x.cernsmp, based on | 2.96

512MB main memory, 512 | CERN Red Hat Linux 7.3.2

KB cache memory,
VME board | sundu sparc SUNW,Ultra- | SunOS 5.8 gec version
computer 5_10 2.95.2

(Force 50T) CPU 300MHz,

256MB main memory, 1MB

cache memory

e Variability: The results of some benchmarks, most notably the context switch bench-
mark, had a tendency to vary quite a bit, up to 30%. It is suspected that the
operating system is not using the same set of physical pages each time a process
is created and thus the effects of collisions in the external caches is observed. It is

compensated by running the benchmark in a loop and taking the minimum result.

6.2.2 Latency measurements

Operating system entry

Entry into the operating system is required for many system facilities.

Figure 6.1 shows latency of getppid system call. The getppid system call gets the
process ID of the parent of the current process. Figure 6.2 shows latency of read system
call to a null device.

Figure 6.3 shows latency of pipe system call. For measuring the latency, it uses two
processes communicating through a Unix pipe to measure interprocess communication
latencies. The benchmark passes a token back and forth between the two processes. No
other work is done in the processes.

Table 6.2 shows the summary for those system calls.

Process creation costs

Process benchmarks are used to measure the basic process primitives, such as creating
a new process. lmbench measures simple process creation by creating a process and

o1

Basic system call

Latency in usec.

2

1.5

1

0.5
0

CAMAC Desktop PC VME board
controller computer

Figure 6.1: Latency of getppid system call

Read system call

Latency in usec.

16
12
8
4
O [| |
CAMAC Desktop PC VME board
controller computer
Figure 6.2: Latency of read system call
Table 6.2: Null system call time (in usec)
System getppid read pipe
CAMAC controller | 1.0372 1.7148 15.9827
Desktop PC 0.4586 0.7234 6.3920
VME board computer | 1.5938 14.2222 46.8666

52

Pipe system call
Latency in usec.

50
40
30
20
18 I

CAMAC Desktop PC ~ VME board
controller computer

Figure 6.3: Latency of pipe system call

Table 6.3: Process creation time (in usec)

System fork / exit
CAMAC controller | 620.5000
Desktop PC 183.8333
VME board computer | 3081.0000

immediately exiting the child process. The parent process waits for the child process to
exit. The benchmark is intended to measure the overhead for creating a new thread of
control, so it includes the fork and the exit time.

Figure 6.4 and Table 6.3 show latency of fork&exit system call.

6.2.3 Context switching performance

Context switch time is defined here as the time needed to save the state of one process
and restore the state of another process. Context switches are frequently in the critical
performance path of DAQ applications.

Typical context switch benchmarks measure just the minimal context switch time -
the time to switch between two processes that are doing nothing but context switching.
However, it depends on number of processes and size of processes.

e Number of processes : The context switch was measured as a ring of 2 to 96 processes
that are connected with Unix pipes. A token is passed from process to process,
forcing context switches. Each transfer of the token has two costs: the context
switch, and the overhead of passing the token. In order to calculate just the context
switching time, the benchmark first measures the cost of passing the token through

93

Latency in usec.

Fork+Exit system call

4000
3000
2000
1000
0 1 ,
CAMAC Desktop PC VME board
controller computer

Figure 6.4: Latency of fork&exit system call

Table 6.4: Context switch times with 4 processes (in usec)

System 4 KB 16 KB 64 KB
CAMAC controller | 5.31 9.22 91.84
Desktop PC 2.16 2.58 6.67
VME board computer | 42.12 101.19 343.65

a ring of pipes in a single process. This overhead time is defined as the cost of
passing the token and is not included in the reported context switch time.

e Size of processes : The context switch time depends on not only the number of
processes but also the size of processes because it is dependent on the cache size of
computers. Three sizes of processes are measured, namely, 4KB, 16KB and 64KB.

When increasing the size, the cache overflow occurs.

Table 6.4 is a result of Context switch times with 4 processes.

Figure 6.5 shows process switching performance with 4&96 processes which size are
4KB.

Figure 6.6 shows process switching performance with 4&96 processes which size are

16KB.
Figure 6.7 shows process switching performance with 4&96 processes which size are

64KB.
Table 6.5 is a result of Context switch times with 96 processes.

o4

Process switching performance

Latency in usec
60

50

40

0O 4 processes

30
@ 96 processes

20
10
0 : |—l , Process size:4kB

CAMAC Desktop VME
controller PC board
computer

Figure 6.5: Process switching performance with 4&96 processes which size are 4KB

Process switching performance

Latency in usec

140

120

100
80 O 4 processes
60 @ 96 processes

40
20
; Process size:16kB
O | |

CAMAC Desktop VME
controller PC board
computer

Figure 6.6: Process switching performance with 4&96 processes which size are 16KB

95

Process switching performance

Latency in usec
400

350
300
250
200
B 96 processes

150
100

50 _. Process size:64kB

0 , .
CAMAC Desktop VME

controller PC board
computer

O 4 processes

Figure 6.7: Process switching performance with 4&96 processes which size are 64KB

Table 6.5: Context switch times with 96 processes (in usec)

System 4 KB 16 KB 64 KB
CAMAC controller | 24.74 55.06 169.93
Desktop PC 8.95 18.07 51.48
VME board computer | 50.00 114.98 357.74

o6

Memory copy performance

Speed in MB/s
10000

¥y

® CAMAC controller

|
‘ B Desktop PC
1000 =

|F F A VME board

508 r . computer

FY
RN
0 1 2 3 4 5

Data size in MB

Figure 6.8: Memory Copy Performance

6.3 Other benchmark programs for Linux system per-
formance measurement

6.3.1 Memory Copy Performance

This is a simple program to measure the memory copy performance using a system call
“memcpy”. The memory size varies from 1KB to 4 MB.
Figure 6.8 is a result of memory copy performance measurement.

6.3.2 NETPERF

Netperf]25] is a benchmark that can be used to measure the performance of many different
types of networking. TCP throughput performance and TCP request & response perfor-
mance are measured. The former shows the bandwidth the network and the latter shows
the latency of the network. Figure 6.9 shows TCP throughput performance measured by
using netperf utility.

Figure 6.10 shows TCP request & response performance measured by using netperf

utility.

o7

Network performance

TCP throughput
Transfer speed in MB/s
15
10
5
0 |
Desktop PC VME board computer

Figure 6.9: TCP throughput

Network performance
TCP request / response

Transactions/sec
4500
4000
3500
3000

2500
2000

O Desktop PC
B \VME board computer

1500
1000
500
0 1 1 1
1 byte / 1byte 64 bytes / 64 byte 100 bytes / 200 128 bytes / 8182
bytes bytes

[L[]

Figure 6.10: TCP request & response

o8

Table 6.6: I/O port access performance

inl() outl()

0.42 usec 0.45 usec

Table 6.7: performance of kernel routines

ioctl system call

copy_from _user

copy_to_user

1.29 usec

0.12 usec

0.13 usec

6.4 CAMAC performance

6.4.1 Performance of basic functions

The execution time of I/O port operation functions called inl() and outl() was measured.
Table 6.6 shows the result of the measurement.

The overhead of ioctl system call was measured by using the CAMAC device driver.
The memory copy performance was previously shown, but copy function of kernel routine
in the device driver takes some overhead. There are two kernel routines, copy_from_user
and copy_to_user. Those overheads were also measured. Actually, four bytes data are
copied by using copy_from_user and copy_to_user.

From hardware point of view, the CAMAC executor executes a CAMAC normal com-
mand frame in 1.04 usec and a CAMAC packet command frame in 1.24 usec. When
a packet includes only a CAMAC frame, it is called a packet frame. Usually a packet
consists of multiple frame. The start frame follows normal frames and then a end frame
at end. According to CAMAC protocol, CAMAC S2 timing signal should not be ignored,
but some CAMAC modules works even if the signal is ignored. Fast mode ignores the
timing signal. In fast mode, the executor executes the normal frame in 0.72 usec and the
packet frame in 0.92 usec. Table 6.8 summaries those values.

Figure 1.2 shows the actual CAMAC performance measured at a CAMAC crate.

Table 6.8: CAMAC performance

frame normal mode fast mode
normal frame 1.04 usec 0.72 usec
packet frame 1.24 usec 0.92 usec

99

PCI performance

e T

Tx DMA flag

Rx DMA flag — {1.04175x16000usec—

e —

Figure 6.11: Block transfer performance

6.4.2 Block transfer performance

If we want to get best performance on the CAMAC operation, block transfer should
be used. Figure 6.11 shows block transfer performance. In the Figure, Rx DMA flag
is asserted first. This means CAMAC DMA read is done first while no actual read
operation is done because CAMAC reply frames are not generated. When CAMAC DMA
write operation starts, CAMAC command frames come into CAMAC executor and the
it executes the frames. In the Figure, CAMAC access shows the execution. After the
DMA write operation, it finishes before the completion of CAMAC operation. When
the CAMAC operation is done, DMA read is also done. On the measurement, 16000
command frames are executed in 16,668 usec. This means a command frame is executed
in 1.04175 usec.

6.4.3 Interrupt frame performance

There is a command frame handling an interrupt called TRIG signal. When the frame is
executed at CAMAC executor, it waits for the signal input. While no signal, no CAMAC
operation is done. When an interrupt occurs, it sends the frame to PCI control unit as
the reply frame. Figure 6.12 shows interrupt frame performance. Input signal occurs at
100 kHz. The interrupt frame follows 4 command frames for CAMAC read. When an
interrupt occurs, the frame is executed in 400 nsec and then the read CAMAC functions
are executed in 1.04 x 4 usec. The figure shows 100 kHz readout with 4 CAMAC operation
should be done successfully.

60

Interrupt frame perf

T
¥

ormance

F]

4 CAMAC Cycles

CAMAGC Busy =

400nsec

4 CAMAC cycles

Trigger Signal

2,36V

(100kHz) -
Trigger | |

oV IM2.00us A ChZ

M 200
Ch4 500mw -

A | .
[

Figure 6.12: Interrupt Frame Performance

61

CAMAC performance with software library

Access time in usec.
300

Access time in usec.

100
80 ‘

B0
40

ACCESS TIME
PIO : 2.67 usec(~1.1MB/s)
DMA: 1.08 usec(~2.8MB/s)

y = 2.6737x+ 6.1174/8
250 .

Overhead
i PIO : ~6 usec
DMA DMA: ~30 usec

0 10 30 4§
Data Size in frams

20

y = 1.0804x + 29.793

Cross point : ~15 frames| 25 50 75 100
Data Size in frames

Figure 6.13: CAMAC performance with software library

6.4.4 CAMAC performance with the CAMAC library

When CAMAC users access the pipeline CAMAC controller, they will use the CAMAC
software library. Actual performance of the controller with the software library should
be measured. Figure 6.13 shows CAMAC performance with the software library. This
is the preliminary result. There are two types of CAMAC operation by using the library.
One is based on PIO while another is based on DMA. Access overhead of PIO is less than
that of DMA. Thus, PIO is better than DMA in small words of CAMAC operation. The
cross point is about 15 CAMAC frames. CAMAC operation in PIO takes 2.67 usec while
that in DMA takes 1.08 usec.

6.5 Application performance

6.5.1 CAMAC remote access program

The remote access program executes CAMAC operations over network as if it executes
on local node. It provides CAMAC library for client and a server program. CAMAC user
can run their own CAMAC program which runs on local node, over network, without any
modification. On the measurement, The desktop PC is used as the client node while the
server run on the pipeline CAMAC controller itself. The performance of DMA operation is
only measured. The results are also preliminary. Figure 6.14 shows CAMAC performance

over network.

62

CAMAC performance over network

Access time in usec.

50000 ACCESS TIME
y = 2.7009x + 391.99 DMA : 2.7 usec(~1.1 MB/s)
40000
2 CAMAC frames(16 bytes) took
30000 ~1.6usec over Fast Ethernet
20000 1.08 +1.6 =~2.7
10000 Overhead

0 DMA : ~400 usec

0 5000 10000 15000 20000
Data Size in bytes

Figure 6.14: CAMAC performance over network
The access time per CAMAC word takes 2.7 usec. A CAMAC command frame consists
of 8 bytes while the reply frame also does 8 bytes. This means 16 bytes of data passes
over network. The overhead is 1.6 usec on network with 10MB/s bandwidth, which is real
value measured on the two nodes. The overhead of DMA per CAMAC command /reply

frame is 1.08 usec. The network overhead plus DMA overhead equals the access time per
CAMAC word over network.

63

Bibliography

[1] IEEE, “IEEE Standard Modular Instrumentation and Digital Interface System (CA-
MAC) (Computer Automated Measurement and Control) IEEE Std 583-1975

[2] PC/104 Embedded Consortium, PC/104-Plus Specification Version 1.2, August 2001
http://www.pcl04.org/

[3] Altera Corporation, http://www.altera.com/
[4] Debian GNU/Linux, http://www.jp.debian.org/
[5] Red Hat Linux distribution, http://www.jp.redhat.com/download/

[6] Home page of Parallel CAMAC Project,
http://www-online.kek.jp/~ yasu/Parallel-CAMAC/

[7] Yet another Parallel CAMAC Project page (in Japanese),
http://www-online.kek.jp/~ inoue/Parallel-CAMAC/

[8] TOYO Corp., CAMAC Crate Controller type CC/7700 and Host Interface Board
types CC/ISA and CC/PCI in Japanese,
http://www.toyo.co.jp/daq/index.html

[9] High Energy Accelerator Research Organization (KEK),
http://www.kek.jp/

[10] TOYO Corporation, http://www.toyo.co.jp/
[11] Fird Corporation, http://www2.ocn.ne.jp/” fird/

[12] KineticSystems Corp., VME to 3922 Interface w/DMA model 2917-Z1A & Model
2915-Z1A & PCI Interface to 3922 Model 2915-Z1A & Parallel Bus Crate Controller
Model 3922-71B,

http://www.kscorp.com/www /products/camac.htm

[13] Y. Yasu, E. Inoue, S. Harada and H. Kyoo, User Guide of Pipeline CAMAC Con-
troller with PC104Plus Single Board Computer (this paper),
http://www-online.kek.jp/~ yasu/Parallel-CAMAC/UserGuide/UserGuide.pdf

64

[14] A general purpose interconnect developed for Parallel CAMAC project.

[15] Advantech Co., Ltd., Board computer PCM-9370
http://www.advantech.co.jp/epc/SBC/biscuit/pcm9370.html

[16] E. Inoue, SBC Operation Manual,
http://www-online.kek.jp/~ inoue/Parallel-CAMAC/Work/OP-Man.htm

[17] E. Inoue, CAMAC page for Solaris operating system
http://www-online.kek.jp/~ inoue/CAMAC/

[18] K. Nakayoshi, USB-CAMAC Library for Linux
http://www-online.kek.jp/~ nakayosi/USB/uguide3929 /uguide.html

[19] Welcome to Linux Home Page at KEK Online Group (old pages)
http://www-online.kek.jp/~ online/Linux/linux.html

[20] Y. Yasu, VME&CAMAC Device Drivers for HP-RT
http://onlhpux.kek.jp/hprt-drivers.html

[21] Y. Yasu, Usage Guide of CAMAC Library for UNIX
http://www-online.kek.jp/~ inoue/CAMAC-Doc/doc/users_guide_v1.pdf

[22] KNOPPIX, http://www.knoppix.org/, http://unit.aist.go.jp/it/knoppix/
[23] Java 2 Platform Standard Edition, http://java.sun.com/j2se/

[24] Larry McVoy (Silicon Graphics, Inc.) and Carl Staelin (Hewlett-Packard Laborato-
ries), Imbench: Portable tools for performance analysis
http://www.bitmover.com/lmbench/

[25] Public Netperf Homepage
http://www.netperf.org/netperf/NetperfPage.html

65

