
Quality of Service on Linux

for the Atlas TDAQ Event Building Network

Y.Yasu1, A. Manabe1, Y. Nagasaka2, Y. Hasegawa3, M. Shimojima4,

M. Nomachi5, H.Fujii1 and Y.Watase1 on behalf of the Atlas Trigger/DAQ group
1(High Energy Accelerator Research Organization, Japan)
2(Hiroshima Institute of Technology, Japan)
3(Shinshu University, Japan)
4(Nagasaki Institute of Applied Science, Japan)
5(Osaka University, Japan)

Abstract

Congestion control for packets sent on a network is important for DAQ systems that

contain an event builder using switching network technologies. Quality of Service (QoS)
is a technique for congestion control. Recent Linux releases provide QoS in the kernel

to manage network tra�c. We have analyzed the packet-loss and packet distribution

for the event builder prototype of the Atlas TDAQ system. We used PC/Linux with
Gigabit Ethernet network as the testbed. The result showed that QoS using CBQ and

TBF eliminated packet loss on UDP/IP transfer while the UDP/IP transfer in best e�ort

made lots of packet loss. The result also showed that the QoS overhead was small. We

concluded that QoS on Linux performed e�ciently in TCP/IP and UDP/IP and will have

an important role of the Atlas TDAQ system.

Keywords: QoS, Linux, TCP, UDP, IP Multicast, CBQ, TBF, DAQ

1 Introduction

Tra�c management of the data ow is an essential point to avoid congestion. QoS is one of the

solutions to avoid the congestion, because it provides the bandwidth allocation in the network.

Gigabit Ethernet technology, which is a major in the high performance network, however, has

no functionality of the QoS while ATM has the functionality on a hardware level. Recently,

link-sharing and resource management for packet network is intensively studied in computer

science [3]. On Gigabit Ethernet with QoS, it will be expected to avoid the congestion of the

event builder tra�c.

From the view point of scalability for the event builder, IP multicast is attractive. How-

ever, TCP does not support multicast while UDP is a non-reliable protocol. There are many

studies of IP multicast. A solution is to make protocols reliable in the application level. An-

other solution is to make it reliable in lower levels such as Data link layer. QoS on Linux is

implemented below the IP layer and woven into the network layer.

We studied the DAQ/EF-1 Event Builder using Linux/Gigabit Ethernet [1]. We already

had a preliminary result of QoS for the event builder [2].

2 Congestion Control and Bandwidth Allocation

The essential point of tra�c management is packet scheduling, known as queueing method.

Packet queueing disciplines are studied in techniques related to ATM in computer science.

They are Class-Based Queueing (CBQ), Token Bucket Filter (TBF) and so on.

2.1 Tra�c Management in Linux

For Linux, kernel 2.2.x and later support many kinds of QoS. The developer toolkit also supplies

some commands for manipulating the parameters in the kernel. The typical command is called



tc. CBQ queueing discipline in Linux kernel supports hierarchical allocation of bandwidth for

link sharing, limiting the packet rate, prioritizing and so on. The TBF queueing discipline in

Linux kernel can also limit packet rate by using a token bucket algorithm. The tra�c control in

TCP/IP for Linux is done only for output queueing. For an example of a queueing discipline,

one can de�ne CBQ as root with a bandwidth of 1000Mbit/s. When a packet comes into

the queueing discipline, the packet will be sent to a classi�er called u32, which classi�es the

packet. The packet will come into a class called CBQ, which also assigns 1000Mbit/s as the

bandwidth. After the packet passes through the class, a queueing discipline called TBF will

limit the transfer speed. The transfer speed will be limited to 100Mbit/s according to the rate

of the token even if packets arrive over the rate.

3 Performance Evaluation

Table 1: Con�guration of PC500 system

CPU Chipset Memory PCIbus

PentiumIII/500MHz 440GX 100MHz/SDRAM/256MB 32-bit/33MHz

Linux kernel version gcc version NIC acenic driver version

2.4.5 egcs-2.91.66 AceNIC(1MB) 0.8

0

200

400

600

800

1000

1200

0 300 600 900 1200 1500
0
10

20
30

40

50
60

70

80

90

100

Message size in bytes

Transfer speed in MB/s Packet loss in percentageNo QoS

0

2

4

6

8

10

12

0 300 600 900 1200 1500
0

20

40

60

80

100

Message size in bytes

Assigned bandwidth = 10Mbit /s

No packet loss in any case

Transfer speed in MB/s Packet loss in percentage

0

10

20

30

40

50

0 20 40 60 80 100
0

20

40

60

80

100

Message size in bytes

Assigned bandwidth = 50 Mbit/s

No packet loss after 60-byte size

Transfer speed in MB/s Packet loss in percentage

0

20

40

60

80

100

120

0 300 600 900 1200 1500
0

20

40

60

80

100

Message size in bytes

Assigned bandwidth = 100 Mbit/s

No packet loss after 200-byte size

Transfer speed in MB/s Packet loss in percentage

Figure 1: Packet loss on UDP/IP multicast transfer



3.1 Measurement

On the measurement of QoS, we measured and evaluated Packet loss for UDP/IP multicast

transfer, TCP/IP transfer speed with/without QoS, CPU usage of QoS on TCP/IP transfer

and packet distribution on TCP/IP transfer with/without QoS & regular trigger. We used

netperf and ttcp utilities as the measurement tools. The Linux network driver for Alteon

AceNIC was used. We enabled the Nagle algorithm for the measurement. The TCP bu�er size

was 500k bytes.

3.2 Setup

The con�guration of the PCs is shown in Table 1. Four PCs of PC500 were used with a Gigabit

Ethernet switch for the evaluation of QoS. The switch was a 3Com Super StackII Switch 9300,

which has 12 Gigabit Ethernet ports.

3.3 Packet loss on UDP/IP multicast transfer

Figure 1 shows an analysis of packet loss on UDP/IP multicast transfer. We made a special tool

in this measurement. The dark line in the Figure shows the transfer speed and the light line

shows the percentage of packet loss. Without QoS, lots of the packet loss were observed. This

depends on the message size and the percentage of packet loss was over 60 % when the message

size was 10 bytes. On the other hand, no packet loss was observed when an expected bandwidth

was assigned with 10 Mbit/s. When the bandwidth was assigned with 50 Mbit/s, packet loss

occurred at small message sizes. When the assigned bandwidth was 100 Mbit/s, the message

size that packet loss occurred became larger. We should manage the assigned bandwidth when

we eliminate packet loss on UDP/IP transfer. It depends on the message size. We also observed

that there was no packet loss at the sender while the receiver lost the packet.

3.4 Speed and CPU usage on TCP/IP transfer

60

70

80

90

100

110

10 100 1000 10000

sender cpu
usage(No QoS)
sender cpu
usage(QoS)

Message size in bytes

CPU Usage (%)

0

100

200

300

400

500

600

700

10 100 1000 10000

No QoS
QoS

Message size in bytes

Transfer speed in Mbit /sec.

Figure 2: Speed and CPU usage on TCP/IP transfer

Figure 2 shows transfer speed and CPU usage. The assigned bandwidth was 1000 Mbit/s

when QoS is applied. This means the transfer is not limited by the assigned bandwidth. The

QoS algorithm uses more CPU time, compared with No QoS. The overhead of QoS algorithm or

the e�ciency of transfer depends on the message size. The transfer with QoS is very e�cient at

small message and large message. That is, QoS overhead is small. The CPU usage between the

transfer with QoS and that without QoS was small at small message, but not at large message.

10 % more CPU was used at large message on the transfer with QoS.



3.5 Packet distribution on TCP/IP transfer

A pseudo trigger was provided for generating a regular trigger signal. The assigned bandwidth

was 10 Mbit/s. The message size was 10 bytes. The tcpdump utility was used for sampling

the data. We measured the packet distribution in 4 cases, the transfer with QoS, the transfer

without QoS, the transfer with QoS in way to generate regular trigger and the transfer without

QoS in the way. Figure 3 shows the packet distributions on TCP/IP transfer in those cases.

The x axis is a time interval between sending packets, in seconds. The y axis is the number

of packets. In �rst case, which is on the left side of the Figure, QoS managed to send packets

at 10 msec, which is the Linux OS scheduling time. In the second case, packets were mostly

sent in several 10 usec. In the third and fourth case, packets were mostly sent around 1 msec,

which is the regular trigger rate, 1 kHz. The di�erence between the third and the fourth was

not observed.

QoS-10Mbps

10 3

0 0.025 0.05

Time (sec)

N
u

m
b

er
 o

f 
p

ac
ke

ts

NoQoS

1

10

10 2

10 3

0 0.025 0.05

Time (sec)

N
u

m
b

er
 o

f 
p

ac
ke

ts

QoS-10Mbps-VTRG

1

10

10 2

10 3

0 0.025 0.05

Time (sec)

N
u

m
b

er
 o

f 
p

ac
ke

ts

NoQoS-VTRG

10 2

10 3

0 0.025 0.05

Time (sec)

N
u

m
b

er
 o

f 
p

ac
ke

ts

Figure 3: Packet distribution on TCP/IP transfer

4 Conclusion

We measured and evaluated Packet loss on UDP/IP multicast transfer, speed and CPU usage

on TCP/IP transfer, and packet distribution on TCP/IP transfer with/without QoS & regular

trigger. QoS could eliminate packet loss on UDP/IP multicast transfer. This shows the feasi-

bility to solve the scalability of Atlas TDAQ event builder. QoS was e�ciently performed on

TCP/IP transfer. CPU usage of QoS on the transfer was small in comparison with that of No

QoS on the transfer. The QoS makes the packet ow at in unit of the scheduling time.

5 Acknowledgments

The authors wish to thank Prof. Takahiko Kondo at KEK for his support and encouragement.

The authors also like to thank Dr. Hanspeter Beck and Dr. Reiner Hauser for checking our

paper and their encouragement.

References

[1] Y.Hasegawa, Y.Nagasaka, Y.Yasu, DAQ/EF-1 Event Builder system on Linux/Gigabit

Ethernet, ATL-DAQ2000-008, March 2000

[2] Y.Yasu et al, Quality of Service on Gigabit Ethernet for Event Builder, the 3rd Interna-

tional Data Acquisition Workshop on Networked Data Acquisition Systems, Lyon, France,

October 20, 2000

[3] S.Floyd and V.Jacobson, Link-sharing and Resource Management Models for Packet Net-

works, IEEE/ACM Transactions on Networking, Vol.3 No.4, August 1995


