
Basic Concepts in Object Oriented ProgrammingRaul Ramos / IT User Support 1

Basic Concepts in Object Oriented Programming

Raúl Ramos-Pollán / IT User Support



Basic Concepts in Object Oriented ProgrammingRaul Ramos / IT User Support 2

It’s about facing “complex” problems

We have LIMITATIONS We use TRICKS



Basic Concepts in Object Oriented ProgrammingRaul Ramos / IT User Support 3

Abstraction + Decomposition + Organisation

Logic

Object Oriented

Functional

Java
C++

SmallTalk



Basic Concepts in Object Oriented ProgrammingRaul Ramos / IT User Support 4

Functional Paradigm

• We think in terms of functions acting on data
– ABSTRACTION: Think of the problem in terms of a process

that solves it.

– DECOMPOSITION: Break your processing down into
smaller manageable processing units (functions).

– ORGANIZATION: Set up your functions so that they call
each other (function calls, arguments, etc.)

• FIRST: define your set of data structures (types, etc.)

• THEN: define your set of functions acting upon the data
structures.



Basic Concepts in Object Oriented ProgrammingRaul Ramos / IT User Support 5

Object Oriented Paradigm

• We think in terms of objects interacting:
– ABSTRACTION: Think in terms of independent agents

(objects) working together.

– DECOMPOSITION: Define the kinds of objects on
which to split the global task.

– ORGANIZATION: Create the appropriate number of
objects of each kind.

• FIRST: Define the behavior and properties of objects of
the different kinds we have defined.

• THEN: Set up objects of each kind and put them to work.



Basic Concepts in Object Oriented ProgrammingRaul Ramos / IT User Support 6

An Scenario

• We want to make an implementation to analyze
data from physics events.

• Data is stored somewhere else (db, file, …)

• Our implementation must:
– Provide data structures to hold data once it is organized

in run, events, tracks, etc.

– Provide the algorithms to:
• Populate the data structures sources (db, file, …)

• Manipulate the data structures to obtain: graphical
representations, analysis, etc.



Basic Concepts in Object Oriented ProgrammingRaul Ramos / IT User Support 7

An Scenario

• With our implementation we will make a library
which will be made available to other physicists so
that they build their own programs to manipulate
events.

This is a VERY simplified scenario for educational
purposes. Real life conceptualizations may differ 

in their philosophy and final implementations.

WARNING



Basic Concepts in Object Oriented ProgrammingRaul Ramos / IT User Support 8

A Functional Approach

Data Definition:
Library EventLibrary;

structure Track {

real coordinates[]; // Array of coordinates

   real angles[]; // Array of angles

}

structure Event {

      integer eventNumber;

   Track tracks[]; // Array of Tracks

}

structure Run {

     Time initTime;

   Time endTime;

   Event events[]; // Array of Events

}



Basic Concepts in Object Oriented ProgrammingRaul Ramos / IT User Support 9

A Functional Approach

 Functions Definition
Library EventLibrary;

Track retrieveTrack(db, tID) { access db, fill arrays, ... }

void drawTrack(Track t) { . . . }

Event retrieveEvent(db, eID)

{ . . . while (i) tracks[i]=retrieveTrack(db, i); . . .}

void drawEvent(Event e) { for t in tracks drawTrack(t); }

real calculateFactor (Event e) {  … access tracks of e …  }

boolean isHiggs (Event e) { … analize tracks of e …  }

Run retrieveRun(rID) { … while (i) events[i]=retrieveEvent(db,i)… };

void analyseRun(Run r)

{ … c=0; for e in allEvents c=++calculateFactor(e); print c; …  };

Event searchForHiggs(Run r) { … access events of r … };



Basic Concepts in Object Oriented ProgrammingRaul Ramos / IT User Support 10

A Functional Approach

User Program:

use EventLibrary;

some_function (Event e) {

 … initialize database, etc …

  Run myRun = retrieveRun(our_db, 1045);

  // Do things with the event passed on to this function

  drawEvent(e);

  print “Factor for event 105 is ” +calculateFactor(e);

  // Do things with the run

  if (searchForHiggs(myRun)!=null) print “found it!!!”;

  analyzeRun(myRun);

}

any function in our program, maybe
the entry point (void main)



Basic Concepts in Object Oriented ProgrammingRaul Ramos / IT User Support 11

A Object Oriented Approach

Track
angles & coords

Event
number

. . .

. . .

Means “is composed of”, “contains”

            OBJECTS DEFINITIONS

A Track contains a set of coordinates and 
angles and it’s able to draw itself

An Event contains a set of Tracks and and it’s
able to draw itself, to tell if it signals a
Higgs boson, and to calculate a factor about
itself.

A Run contains a set of Events and it’s able
to search for the Higgs boson within its
Events and to calculate some global figure
from its Event’s factors.

Run
Beginning Time

End Time

Event
number

Track
angles & coords



Basic Concepts in Object Oriented ProgrammingRaul Ramos / IT User Support 12

An Object Oriented Approach

• We have three kinds of objects:
– Run, Event, Track

• We may have several objects of each kind.

• OO is about defining of objects not about defining
processes.

• To define objects we have to define two things:
properties (state) and behavior.

• In the previous informal definitions:
– Track:    coords+angles                      draw

– Event:      tracks+nb           draw + calc.Factor + Higgs?

– Run:       events+times        search Higgs + calc. Global



Basic Concepts in Object Oriented ProgrammingRaul Ramos / IT User Support 13

Defining objects: STATE

Encompasses all the properties of an object. 
Each property has a value or a reference to another object. 
All objects of the same “kind” have the same properties 

(although may have different values).

Properties are implemented with Object Variables

Every Track has a set of coordinates and angles.
Different Tracks contain different sets of coords. and angles.

Every Event has an event number and is composed of a set of tracks.
Different Events have different numbers and tracks.

Every Run is has a beginning and ending time and a set of events.
Different Runs have different times and events.



Basic Concepts in Object Oriented ProgrammingRaul Ramos / IT User Support 14

Every Track can draw itself
A specific Track will draw itself according to its own data.

Every Event can draw itself (by ordering the tracks it contains to
themselves), can calculate a factor about itself and tell if it contains a Higgs
boson.

Every Event will perform this operations according to their own 
properties (tracks, number).
Every Run can search for Higgs bosons within its Events and calculate some
global figure.

Defining objects: BEHAVIOR

Is how an object reacts, in terms of state changes and
interaction with other objects.

           It is defined with Object Methods



Basic Concepts in Object Oriented ProgrammingRaul Ramos / IT User Support 15

Defining objects: CLASSES

Every Track is an instance of the Track CLASS
Every Event is an instance of the Event CLASS
Every Run is an instance of the  Run CLASS

A CLASS is a set of objects that share the same 
properties and behavior. It is the intuitive notion

of a “kind” of objects.

It’s where Variables and Methods are defined

OO IS MAINLY ABOUT DEFINING CLASSES

An object which follows the definition of a class is said to
be an INSTANCE of that CLASS.



Basic Concepts in Object Oriented ProgrammingRaul Ramos / IT User Support 16

OO Programming Languages

• Functional programming languages (C, Pascal, FORTRAN,
etc.) provide mechanisms to manipulate the basic
conceptualizations:
– define functions, call functions, etc.

• OO Programming languages provide mechanisms to:
– define classes: CLASS { …… }

– create instances: new CLASSNAME

– etc.

• The following examples are in no particular OO
programming language. Specific OO languages provide
similar constructs.



Basic Concepts in Object Oriented ProgrammingRaul Ramos / IT User Support 17

CLASSES definition
Library EventLibrary;
CLASS Track {
  real coordinates[]; // Array of coordinates
  real angles[];      // Array of angles

  constructor Track(database db, int tID) {
…
access database
fill in coordinates[] and angles[] arrays from db
…
other initialization code.

  }

  void method draw(){
foreach i in coordinates[] {

drawLineWithAngle (coordinate[i], angle[i]);
}

  }
}

Constructor is called
whenever a new object 
(instance) of this class
is created.

Two properties for every Track

One thing every Track knows how to do



Basic Concepts in Object Oriented ProgrammingRaul Ramos / IT User Support 18

CLASSES definition
Library EventLibrary;

CLASS Event {
  Track tracks[]; // Array of tracks
  int eventNumber;

  constructor Event(database db, int eID) {
… access db, retrieve numer of tracks …
while (i) { tracks[i] = new Track(db, i); }

  }

  void method draw() {
forall t in tracks[] t.draw();

  }

  real method calculateFactor() { … access tracks, calculate … }
  boolean method isHiggs() { … access tracks, analize … }
}

To create new objects we use the new
operator, and the class from where to take
the definition for the new object.
Arguments are defined in the Track
constructor

We ask an object to do something.
Since t is a Track, the definition for 
the Track CLASS must have an 
implementation for the draw method. 



Basic Concepts in Object Oriented ProgrammingRaul Ramos / IT User Support 19

CLASSES definition
CLASS Run {
  Date begin, end;
  Event events[]; // Array of events

  constructor Run(database db, int rID) {
… access database, retrieve number of events
while (i) { events[i] = new Event (db, i); }

  }

  Event method searchForHiggs() {
… access events[], calculate,
  return Event object or null …

  }

  void method analize() {
… c=0;
for e in events[] { c=++e.calculateFactor(); }
print c;

  }
}

We ask an object to do something. 

We create new objects. 



Basic Concepts in Object Oriented ProgrammingRaul Ramos / IT User Support 20

User Program

use EventsLibrary;
class Sample {
 some_method (Event e) {

  … initialize database, etc …
  Run myRun = new Run(our_db, 1045);

  // Do things with the event passed when calling this method
  e.draw();
  print “Factor for event 105 is “ + e.calculateFactor();

  // Do things with the run
  if (myRun.searchForHiggs()!=null) print “found it!!!”;
  myRun.analyze();

 }
}

Create an object. Notice that since in the Run 
constructor we create new Event objects which
in turn create  Track objects.

Ask objects to do things



Basic Concepts in Object Oriented ProgrammingRaul Ramos / IT User Support 21

Functional vs OO Approaches

• What we obtain is the same.

• We have basically reorganized the code.

• The difference in the calls signals the philosophies:
– Functional: WE DO SOMETHING TO A DATA

STRUCTURE drawEvent(e);
calculateFactor(e);

– OO: WE ASK AN OBJECT TO DO SOMETHING

 e.draw(); e.calculateFactor();

• OO Provides the mechanisms to:
– Invoke the correct constructor when objects are created

– Invoke the correct method when asking an object to do something



Basic Concepts in Object Oriented ProgrammingRaul Ramos / IT User Support 22

The First OO Principle

Encapsulation
• Hides the behavior of an object from its implementation
• Separates what an object looks like from how it does it 
 implements its behavior.

Nobody but themselves knows how a Track
draws itself or how an Event calculates its factor



Basic Concepts in Object Oriented ProgrammingRaul Ramos / IT User Support 23

Extending the Library

• We have distributed the library and we have people
making programs with it.

• Now, in addition to the events we already have, there is a
new kind of event which contains more data and a new
algorithm for drawing based on this new data.

• We need to update the library.



Basic Concepts in Object Oriented ProgrammingRaul Ramos / IT User Support 24

Refining Classes

Library EventsLibrary;
CLASS ColoredEvent INHERITS FROM Event {
  real color;

  constructor ColoredEvent (database db, int eID) {
… access db, retrieve color into color variable.
super(db, eID);

  }

  void method draw() {
setBgColor(color);
… some other faster algorithm to draw the Tracks …

  }
}

A ColoredEvent inherits all definitions
from Event (variables and methods)

A ColoredEvent constructor gets color data
from the database and then does the same
as the constructor Event.

The draw method substitutes completely the
draw method from Event.

ALL OTHER DEFINITIONS FROM EVENT ARE
PRESERVED.



Basic Concepts in Object Oriented ProgrammingRaul Ramos / IT User Support 25

Refining Classes

use EventsLibrary;
class Sample {
  some_method () {

    … initialize db …

    Event e1 = new Event (our_db, 105);
    e1.draw();
    e1.calculateFactor();

    ColoredEvent e2 = new ColoredEvent (our_db, 246);
    e2.draw();
    e2.calculateFactor();

  }
}

An Event as before

When invoking e2.draw() the system
actually calls the draw method defined in
the ColoredEvent class

When invoking e2.calculateFactor()
method the system actually calls the
method defined in the Event class

This resolution is made at run-time and the code to
do it’s placed in our program by the OO compiler



Basic Concepts in Object Oriented ProgrammingRaul Ramos / IT User Support 26

The Second OO Principle

Inheritance

• Mechanism by which a class (subclass) refines the behavior
   and properties of some other class (superclass).
• The subclass IS A superclass plus something else.

 A ColoredEvent is an Event plus extra data and some redefinitions. 

    This is reuse of code.



Basic Concepts in Object Oriented ProgrammingRaul Ramos / IT User Support 27

Functional Approach 1
  structure ColoredEvent {

   real color;

      integer eventNumber;

   Track tracks[];

  }

  ColoredEvent retrieveColoredEvent(db, eID) {

… access db, retrieve color into color variable …

Event e = retrieveEvent (db, eID);

eventNumber = e.eventNumber;

tracks      = e.tracks();

  }

  void drawColoredEvent(ColoredEvent e) {
   setBgColor(color);

   … some other faster algorithm to draw the Tracks …

  }

If we want to change the data definition common
to Event and ColoredEvent we have to change it
in both.

Reuse of code means duplicating and
copying data

We have to use a new function name.
We would never want to pass an Event to a
drawColoredEvent function



Basic Concepts in Object Oriented ProgrammingRaul Ramos / IT User Support 28

Functional Approach 2
  structure ColoredEvent {

   Event eventData;

   Track tracks[];

  }

  ColoredEvent retrieveColoredEvent(db, eID) {

… access db, retrieve color into color variable …

         while (i) eventData.tracks[i]=retrieveTrack(db, i);

}

  void drawColoredEvent(ColoredEvent e) {
   setBgColor(color);

   … some other faster algorithm to draw the Tracks …

  }

Now, we really have common data definitions.
                     This is reusing code.

Now we cannot reuse the retrieveEvent function because the way to access
the tracks[] array is different for ColoredEvent and Event



Basic Concepts in Object Oriented ProgrammingRaul Ramos / IT User Support 29

Remember the user program

use EventsLibrary;

class Sample {
 some_method (Event e) {
  . . .

  // Do things with the event passed when calling this method
  e.draw();
  print “Factor for event 105 is “ + e.calculateFactor();

  . . .
 }
}
class YYY {
 some_other_method() {
    … initialize some other db …
    Event myEvent = new Event(my_db, 3509);
    Sample s = new Sample();
    s.some_method(myEvent);
 }
}

The method that the user
had implemented (abbreviated)

Now we have other method
calling the previous one

Create an Event and pass
it as parameter

Independently of the previous problems this is quite analogous in functional paradigms.

This calls the draw method
of the Event class



Basic Concepts in Object Oriented ProgrammingRaul Ramos / IT User Support 30

Inheritance Relations
use EventsLibrary;

class Sample {
 some_method (Event e) {
  . . .

  // Do things with the event passed when calling this method
  e.draw();
  print “Factor for event 105 is “ + e.calculateFactor();

  . . .
 }
}
class YYY {
 some_other_method() {
    … initialize some other db …
    ColoredEvent myEvent = new ColoredEvent(my_db, 5690);
    Sample s = new Sample();
    s.some_method(myEvent);
 }
}

some_method is not changed

We pass a ColoredEvent. This is OK. From
Inheritance every ColoredEvent is also an Event

the actual “draw” method invoked is only known at
run-time. In this example the ColoredEvent.draw method is

the one invoked.



Basic Concepts in Object Oriented ProgrammingRaul Ramos / IT User Support 31

The Third OO Principle

Polymorphism
•We can deal with objects without the need to know
  what exact class they belong to
•This is an extension of the inheritance concept

Sample.some_method just needs its argument to be
an Event so it can also be an object of any class derived from
Event. Actual methods are resolved at run time, by the OO

mechisms.



Basic Concepts in Object Oriented ProgrammingRaul Ramos / IT User Support 32

This is Polymorphism

• Polymorphism can be though of as a consequence of
inheritance.

• If you ask anyone if a dog is a mammal the answer is yes

• If you ask the system if a ColoredEvent is an Event the answer
is always yes, including when you are passing parameters.

• This is very important. Look at the example again:

We have redefined an Event into a ColoredEvent AFTER
the user created his Sample class.

His Sample class is now using ColoredEvent
WITHOUT ANY NEED TO CHANGE IT



Basic Concepts in Object Oriented ProgrammingRaul Ramos / IT User Support 33

Another Example
CLASS Alien {
  String myName;

  constructor Alien (String Name) {
    myName = name;
  }
  public method WhoAreYou() {
    print “I’m alien “+myName;
  }
}

CLASS MarsAlien INHERITS FROM Alien {
  public method WhoAreYou() {
    super.WhoAreYou();
    print “from Mars”;
  }
}

CLASS AlienKiller {
  public method KillAlien (Alien victim) {
    println “His Last Words:”;
    victim.WhoAreYou();
 }
}

// Instance objects
a1 = new Alien (“Johny”);
a2 = new MarsAlien (“Soujourner”);
k  = new AlienKiller();

// Kill one alien
k.KillAlien(a1);
  >> His Last Words:
  >> I’m alien Johny

// Kill the other alien
k.KillAlien(a2);
  >> His Last Words:
  >> I’m alien Soujourner from Mars



Basic Concepts in Object Oriented ProgrammingRaul Ramos / IT User Support 34

OO Scope

OBJECT-ORIENTED ANALYSIS:  Examines the requirements of a
system or a problem from the perspective of the classes and objects found
in the vocabulary of the problem domain

OBJECT-ORIENTED DESIGN: Architectures a system as made of objects
and classes, specifying their relationships (like inheritance) and interactions.

OBJECT-ORIENTED PROGRAMMING:  A method of implementation in
which programs are organized as cooperative collections of objects, each of
which represents an instance of some class, and whose classes are all members
of a hierarchy of classes.



Basic Concepts in Object Oriented ProgrammingRaul Ramos / IT User Support 35

SUMMARY

• We have seen that:
– OO is about defining object classes and instantiating

objects from those classes.

– A class is data definitions TOGETHER with code.

– The three OO principles:
• ENCAPSULATION + INHERITANCE + POLYMORPHISM

• Allow for clean CODE REUSE

• Allow for cxlean CODE INDEPENDENCE

– OO Provides more kinds of building blocks to build
complex maintainable structures.



Basic Concepts in Object Oriented ProgrammingRaul Ramos / IT User Support 36

What’s good about OO
• Code reuse and uniqueness by inheritance & encapsulation

• Maintainability: changes in a superclass code are “seen”
  by all subclasses, ensuring uniqueness of code.

• Independence of code by encapsulation. Implementations
  of objects do not interfere among themselves.

• Independence through polymorphism.

• High degree of organisation and modularity of the code. 
  This fits the needs of large projects.

• Makes you think before putting your “hands on”. Fast
  development is “self-organised”. Good for prootyping.



Basic Concepts in Object Oriented ProgrammingRaul Ramos / IT User Support 37

What’s bad about OO

• Compiled programs are usually larger since we need to implement inheritance
  resolution at run time. This is typically done by producing look-up tables for
  for methods and objects. 

• Compiled programs may be slower because inherited code has to be looked
  up when called from subclasses. In C++, calling a method is as fast as calling
  a function in C, because there is more information in the lookup tables
  produced by the compilers.

Advantages LARGELY overcome disadvantages: Optimised Compilers, Spread
of Use, lots of Libraries of Classes … 

MOST OF THE LARGE SW BEING DEVELOPED IS OO !!



Basic Concepts in Object Oriented ProgrammingRaul Ramos / IT User Support 38

More Documentation

UCO Books:

Grady Booch, Object-Oriented Analysis and Design, Addison-Wesley

Bertrand Meyer, Object-Oriented Software Construction, Prentice Hall

Any OO Programming Language tutorial usually includes a OO overview:
Java, C++

Software Development Tools at CERN:

http://www.http://www.cerncern..chch/PTTOOLS/PTTOOLS


