Super KEKB Data Acquisition System

Mikihiko Nakao (KEK) 5 October, 2001 at the Electronics/Online Users' Workshop

RECENT BELLE RESULTS

$\int \mathcal{L} = 29.1 \text{fb}^{-1} \Rightarrow 32 \text{M} B \overline{B}$ events — recorded by July 2001

RECENT BELLE RESULTS

$\int \mathcal{L} = 29.1 \text{fb}^{-1} \Rightarrow 32 \text{M } B \overline{B}$ events — recorded by July 2001

Observation of CPV in B decay

 $\sin 2\phi_1 = 0.99 \pm 0.14 \pm 0.06 \quad (\neq 0)$

First step towards CKM unitarity triangle

RECENT BELLE RESULTS

Observation of CPV in B decay

First step towards CKM unitarity triangle

Observation of $B \to K \mu^+ \mu^-$ decays

SUPER KEKB

Super KEKB Data Acquisition System Mikihiko Nakao (KEK) 5 October, 2001 Page 3 of 25

▷ Activities

▶ Just started — first workshop in Aug. 2001

▷▷ (note: none of these activities / plans are official yet)

SUPER KEKB

▷ Activities

- ▷▷ Just started first workshop in Aug. 2001
- ▷ Motivation Flavor physics
 - **Do Beyond the precision Measurement of CKM matrix**
 - ▷▷ Tool to understand the physics of higher energy and beyond SM (BSM)
 - As kaon experiments have been.
 - ▷▷ Complementary to the energy frontier experiments (LHC, LC, ...)

SUPER KEKB

▷ Activities

- ▷▷ Just started first workshop in Aug. 2001
- Motivation Flavor physics
 - ▶ Beyond the precision Measurement of CKM matrix
 - ▷▷ Tool to understand the physics of higher energy and beyond SM (BSM)
 - ▷▷ Complementary to the energy frontier experiments (LHC, LC, ...)

Solution — Luminosity frontier

- ▷▷ Upgrade KEKB and Belle for $\mathcal{L} = 10^{35} \text{ cm}^{-2} \text{s}^{-1}$ (×10 of the current design)
- $\triangleright e^+e^-$ experiment is better in many channels than hadron machines
 - (BTeV, LHCb, ATLAS, CMS)

ROADMAP

Super KEKB Data Acquisition System Mikihiko Nakao (KEK) 5 October, 2001 Page 4 of 25

First Step

Discovery of CPV in *B*-decay

 $\int \mathcal{L} = 30 \text{ fb}^{-1}$ $\mathcal{L} = 4.5 \times 10^{33} \text{ cm}^{-2} \text{s}^{-1}$ 2001 (Now) Achieved

OKADA MATRIX

		-SUSY-		Ŗ	W_R	extra	2HDM	extra	
	mSUGRA	Minimal	General	SUSY	Z'	quark	MHDM	dim.	•••
		Flavor	Flavor						
		Mixing	Mixing						
B_d Unitarity triangle									
$b ightarrow s \ell^+ \ell^-$ inclusive									
$B ightarrow K^{(*)} \ell^+ \ell^-$						~			
$b ightarrow s au^+ au^-$									
$B o K^{(*)} u ar{ u}$					-die	es l			
$b \rightarrow s \gamma$ direct asymmetry				:11 5		res			
$B \to K_1 \gamma$ indirect asymmetry			in the second se	tivit'ir	Pre				
$b ightarrow d\gamma$			Sens	* _					
$B o ho \gamma$									
$B o D^{(*)} au u$									
$B \to \tau \nu$									
$B o \phi K_S$									
:									
:									

ACCELERATOR UPGRADE

- More beam current 0.9 A/0.8 A → 10 A / 3 A (LER/HER)
- > Squeeze beam more
 - $\triangleright \triangleright$ Squeeze $\beta_y^*: 6.5 \text{ mm} \rightarrow 3 \text{ mm}$
 - $\triangleright \triangleright$ Bunch length 5 mm \rightarrow 3 mm

▷ New IR design

- $\triangleright \triangleright$ Crossing $\pm 11 \text{ mrad} \rightarrow \pm 15 \text{ mrad}$
- $\triangleright \triangleright$ Crab cavity
- Electron cloud
 - $\triangleright \triangleright$ Swap $e^+ \Leftrightarrow e^-$
 - ▷▷ Ante-chamber

- ▷ New interaction region (IR) design is needed.
- ▷ QCS (final focus quad) closer to IP No EFC (extreme forward calorimeter)
- Beam mask design is essential for radiation tolerance, cooling design, and beam background estimation.
- Aiming for 1.0 cm radius beampipe (for better vertexing) Beam-pipe with 1.5 cm radius is OK.

BELLE DETECTOR

- silicon vertex detector (SVD)
 3 layers of double sided sensors
- central drift chamber (CDC) 50 anode layers
- 3. aerogel cherenkov counters (ACC) 1188 cells, n = 1.01 to 1.03
- 4. time-of-flight counters (TOF) 4cm thick scintillator, 128 in ϕ
- 5. electromagnetic calorimeter (ECL) 8736 CsI(Tl) crystals
- 6. K_L and μ detector (KLM) 14 layers of glass RPC in iron yoke
- superconducting solenoid
 1.5 Telsa
- 8. extreme-forward calorimeter (EFC) 320 BGO on top of final focus quad

BELLE DETECTOR

- ▷ Physics goal
- Radiaion tolerance
- ▷ Occupancy
- ▷ Readout deadtime

- silicon vertex detector (SVD)
 3 layers of double sided sensors
- central drift chamber (CDC) 50 anode layers
- 3. aerogel cherenkov counters (ACC) 1188 cells, n = 1.01 to 1.03
- 4. time-of-flight counters (TOF) 4cm thick scintillator, 128 in ϕ
- 5. electromagnetic calorimeter (ECL) 8736 CsI(Tl) crystals
- 6. K_L and μ detector (KLM) 14 layers of glass RPC in iron yoke
- superconducting solenoid
 1.5 Telsa
- 8. extreme-forward calorimeter (EFC) 320 BGO on top of final focus quad

DAQ35 DESIGN SPEC

	$4 \times 10^{33} \text{ cm}^{-1} \text{s}^{-1}$ (now)	$1 \times 10^{35} \text{ cm}^{-1} \text{s}^{-1} (\times 25)$
More background	200 Hz (design: up to 500 Hz)	$1 - 3 \text{ kHz (?)} \\ \text{(design: up to 5 kHz)} $
More physics	40 Hz (BB+qq: 15 Hz)	I KHZ (!) (BB+qq: 400 Hz (!))
Data size	40 kB (SVD: 15 kB)	$\frac{100 \text{ kB}}{\text{(pixel SVD: 50 kB)}} \bigstar 2$
Data flow at L1	10 MB/s (design: 15 MB \rightarrow 40 MB)	200 - 400 MB/s (design: 600 MB/s (!))
at storage	5 MB/s (design: 15 MB \rightarrow 24 MB) $\bigstar 4$	50 - 100 MB/s ★ 3 (design: 240 MB/s)

- $\star 1$ Background rate should not scale to luminosity... probably scale to the beam current.
- $\star 2$ Data size will increase due to a larger occupancy.
- **★3** A factor of 2 more reduction with software trigger, prescaling two-photon/ $\tau\tau/\mu\mu/ee\gamma$.
- ★4 After DAQ upgrade in summer 2001 (now)

ELECTRONICS AND DAQ NOW

Data

Storage

System

Front-end system since beginning

New event build- \triangleright ing farm + data storage system just replaced

L1 TRIGGER NOW

Level-1 trigger

Q-TO-T + FASTBUS SYSTEM NOW

VA1 + FADC SYSTEM NOW

Flash ADC to readout frontend VA1-chip

sparsification by onboard DSP4 VME crates to readout flash ADC

VA1 latch at 1µs by the TOF cluster pre-trigger (a few kHz)

EVENT BUILDING FARM NOW

filtering

reconstruction

Switchless EB-farm from 2001 fall first physics run from today!

- $> layer1 \rightarrow 2$ - 15 MB/s/link
- ▷ layer2 \rightarrow 3 — ~50% reduction

ELECTRONICS FOR SUPER KEKB

Current DAQ system will not work with 10 times higher background rate. At 5 kHz, deadtime $< 10\mu$ s is needed.

- ▷ L1 latency (2.2 μ s) is too long if trigger comes at 5 kHz. Need pipeline buffer (analog/digital) before L1 decision.
- No software based readout system.
 Need large FIFO buffer (with sparcification) for a delayed readout.
- ▷ Individual systems:
 - ▷ SVD Occupancy will be critical $(4\% \rightarrow 40\%?)$ Analog pipeline should be in front-end
 - ▷▷ ECL Need faster shaping time Pileup effect
 - $\triangleright \triangleright$ CDC Inner part should be replaced with SVD. dE/dx measurement. (similar system for PID/KLM).

SVD ELECTRONICS

Super KEKB Data Acquisition System Mikihiko Nakao (KEK) 5 October, 2001

Page 16 of 25

- Closely related to the new SVD design (vertex resolution, occupancy, radiation tolerance, cost, ...)
- Pixel or not finer innermost layer to reduce occupancy
- Extended outer layer drift chamber will not work there
- Analog pipeline on the readout chip — not so easy task

ECL ELECTRONICS

- Use the same CsI(Tl)
 OK in terms of radiation
 (too costly to find and replace with a new/better crystal)
- The optimal shaping time is too slow, if pile up is considered.
- ▷ Lots of low energy pile-ups (a few MeV $\rightarrow \Sigma \sim O(GeV)$).
- Need much shorter shaping multi-range flash-ADC
 + waveform sampling.

Super KEKB Data Acquisition System Mikihiko Nakao (KEK) 5 October, 2001 Page 17 of 25

CDC ELECTRONICS

- ▷ Use similar drift chamber OK in terms of occupancy.
- ▷ TMC (time-memory chip) is a good candidate for readout.
- $\triangleright dE/dx$ should be carefully considered.

ELECTRONICS SUMMARY

	almost of all detectors should be						
	redesigned						
	hit ratech or occupancy			typical time sca of dete	le detec tor@ ctor		
	present	x10	x100				
KLM	B:4Hz E:>40Hz	B:40Hz E:>400Hz	5 kHz	1msec/cm ² øp-mode)	<1/10pp-mode & electronics <1/factor:segmentation		
Csl	$^{\sigma}$ noise	<3 o _{noise}	<10 o _{noise}	>900nsec			
TOF	30kHz	300kHz	3MHz	∌ 0nsec	<1/50:segmentation&electronics		
ACC	B:1kHz E:5kHz	10kHz 50kHz	100kHz 500kHz	∼50nsec	<1/10:segmentation		
CDC	5kHz* w/o inner	50kHz <10%	500kHz	~400nsec (cell size)			
SVD	20kHz 4%	40%	100%	0.11µsec (noise)	even ifx10 fine granularity is necessary		
EFC			Deadt	ime fracti	on of most detectors > 5%		

DAQ BACKEND

▷ Readout system

▷▷ Non-VME system can be used if realtime software is not needed.

- Serial line readout (USB2.0 or IEEE1394)
- ⊳ EB-farm
 - ▷ No much room to add EB-farm nodes to cope with $\times 10$ data rate.
 - Event distribution and multiple EB-farms running in parallel.
- Storage system
 - $\triangleright \triangleright$ No single drive can write at a rate of $\times 10$ data rate.
 - Disk caching and delayed writing into multiple tape drives.

READOUT UNIT

Page 21 of 25

Readout Unit

1 PC + 1 box + 1 timing system Backplane system (9U VME?) is convenient for misc. purposes.

Data readout/transfer using serial-bus (USB2.0 or IEEE1394).

10-20 readout module / crate

~1-2K channel / unit for ECL / CDC ~10-20K channel / unit for SVD

MULTIPLE EB-FARM

One of the possible configuration, with no much challenge for per-node speed.

1-to-5 splitting (GbE to FastE) and 10-to-1 bundling (FastE to GbE), with inexpensive network switches.

Scalable up to 1-to-N (N~O(10)) splitting

May need some network techniques such as QoS (RSVP) and/or VLAN. (need to confirm).

DISK CACHING

Tape drive candidates: SONY DTF3 (48 MB/s) in 2002 =⇒ DTF4 (96 MB/s) in 2006?

No single drive at 240 MB/s
⇒ No data transfer, either?
Disk cache and delayed write

Switching disks

Need multi-port disk ? PC with multi-port network + network switch

If input speed = N * output speed, N+2 PC are needed

Unit PC for disk caching

200 GB 2-port ~50 MB/s x GbE

Fast enough disk? If not, RAID?

DAQ35 FULL CONFIGURATION

Super KEKB Data Acquisition System Mikihiko Nakao (KEK) 5 October, 2001 Page 24 of 25

- ▷ The Belle data acquisition system has been so simple
 - ▷▷ Working very stably with quite a small number of operation crews.
 - ▷▷ Reasonably good choice for the Belle I.

- ▷ The Belle data acquisition system has been so simple
 - ▷▷ Working very stably with quite a small number of operation crews.
 - ▷▷ Reasonably good choice for the Belle I.
- ▷ The Super KEKB DAQ demands a complete replacement of the electronics
 - ▷▷ New idea is needed, new R&D efforts have to be made.
 - \triangleright The dataflow part will be rather easy (thanks to IT).
 - Still the system is much simpler than hadronic machines— technologies should be borrowed from those people.

- ▶ The Belle data acquisition system has been so simple
 - ▷▷ Working very stably with quite a small number of operation crews.
 - ▷▷ Reasonably good choice for the Belle I.
- ▷ The Super KEKB DAQ demands a complete replacement of the electronics
 - ▷▷ New idea is needed, new R&D efforts have to be made.
 - $\triangleright \triangleright$ The dataflow part will be rather easy (thanks to IT).
 - Still the system is much simpler than hadronic machines— technologies should be borrowed from those people.
 - ▷▷ Lots of help from Electronics group.

- > The Belle data acquisition system has been so simple
 - ▷▷ Working very stably with quite a small number of operation crews.
 - ▷▷ Reasonably good choice for the Belle I.
- ▷ The Super KEKB DAQ demands a complete replacement of the electronics
 - ▷▷ New idea is needed, new R&D efforts have to be made.
 - \triangleright The dataflow part will be rather easy (thanks to IT).
 - Still the system is much simpler than hadronic machines— technologies should be borrowed from those people.
 - Lots of help from Electronics group.So far, and so will be.